عرض سجل المادة البسيط

dc.contributor.authorAbusaeeda, Omar
dc.contributor.authorNaas, Salah
dc.contributor.authorShashoa, Nasar Aldian
dc.date.accessioned2018-10-04T05:59:38Z
dc.date.available2018-10-04T05:59:38Z
dc.date.issued2018-09-27
dc.identifier.urihttp://dspace.elmergib.edu.ly/xmlui/handle/123456789/29
dc.description.abstractThis paper presents an improved version of SIFT method for extracting invariant features from images that can be used to solve the correspondence problem between different views of an object or scene in an image. Scale invariant feature transform (SIFT) has recently gained substantial attention in the computer vision community to address the problem. Corresponding features in sequential pairs of images, at various different angular separations, were identified by applying a scale invariant feature transform (SIFT). Due to limitation in the standard SIFT; some of matches are considered false matches. Epipolar-line and disparity window criteria were introduced to enhance the performance of SIFT. Experiments revealed that considerable number of unfaithful matches were removed when new criteria are introduced. Future work will focus on improving the SIFT technique; to rectify the negative matches in order to obtain better matching result.en_US
dc.language.isoenen_US
dc.publisherCEST-2018en_US
dc.relation.ispartofseriesCEST2018;1187
dc.subjectSIFT, Image matching, positive matchesen_US
dc.titleCapability of Modified SIFT to Match Stereo Imagery Systemen_US
dc.typeArticleen_US


الملفات في هذه المادة

Thumbnail

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط