عرض سجل المادة البسيط

dc.contributor.authorAlgrbaa, Hanan A. ,
dc.date.accessioned2023-08-15T07:30:45Z
dc.date.available2023-08-15T07:30:45Z
dc.date.issued2023-07
dc.identifier.urihttp://dspace.elmergib.edu.ly/xmlui/handle/123456789/1765
dc.description.abstractThis research presents a comprehensive presentation of speaker recognition technology, beginning with the basics of self-identification, extracting some features from the voice, models used, updates and current developments, and identifying methods for the Speaker Recognition System 'SRS'. first we extracted features from the speech signal and then we give them to the statistical model . This study We use GMM as statistical model to create a unique voice print for each identity Keywords (Speaker recognition , Feature extraction , Gaussian mixture model [GMM], Mel Frequency Cepstral Coefficients[MFCC].en_US
dc.language.isootheren_US
dc.publisherELMERGIB UNIVERSITYen_US
dc.titleSpeaker recognition from speech using Gaussian mixture model (GMM) and (MFCC)en_US
dc.typeArticleen_US


الملفات في هذه المادة

Thumbnail

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط