

Convexity Preserving Integral Operator

Ebtisam. A. Eljamal¹, M. Darus² and D. Braez³

¹Al-Mergeb University, Faculty of Science, Department of Mathematics Al-Khums, Libya, ¹N ebtisam@yahoo.com

²University Kebangsaan Malaysia, School of Mathematical Sciences, Faculty Of Science and Technology, Bangi, Malaysia, ² maslina@ukm.my

³1 Decembrie 1918 University of Alba Iulia, Faculty of Science, Department of Mathematics-Informatics, 510009 Alba Iulia, Romania ³dbreaz@uab.ro

Abstract

The purpose of this paper, is to determine conditions of an integral operator F(f; g)(z) given by (1) to be convex.

Key Words: and phrases: Analytic function, integral operator, convex function, close-to-convex function.

الملخص

في هذه الورقة البحثية تم عرض كل التعاريف و المفاهيم الاساسية والنظريات المساعدة التي تمكن من خلالها الى الوصول الى نتائج هده الورقة حيث تمت دراسة بعض الخواص الهندسية للمؤثر التكاملي المعرف في الصيغة الاتية

$$F(z) = \frac{\alpha + 1}{z^{\alpha}} \int_0^z (f(t)e^{g(t)})^{\alpha} dt.$$

حيث ان كل من الدوال المعرفة في المؤثر هي دوال مركبة معرفة على دوال تحليلية حول دائرة الوحدة في المستوى المركب.

Introduction

Let *U* be the unit disk of the complex plane:

$$U = \{z: |z| < 1\}$$

Let H(U) denote the class of analytic functions in U. Also let

$$A_n = \{ f \in H(U), f(z) = z + a_n + a_{n+1}z^{n+1} + \dots z \in U \}$$

with $A_1 = A$,

$$K = \left\{ f \in A, Re \frac{zf''(z)}{f'(z)} + 1 > 0, \qquad z \in U \right\}$$

denote the class of convex functions in U,

$$C = \left\{ f \in A, \exists \varphi \in K, Re \frac{f'(z)}{\varphi(z)} > 0, \quad z \in U \right\}$$

denote the class of close-to-convex functions.

In order to prove our main result, we need the following lemma.

Lemma 1.1. [9] If P is an analytic function in U, with ReP (z) > 0 and if P satisfies

$$Re\left[P(z) + \frac{zP'(z)}{P(z)}\right] > 0, \quad z \in U,$$

then $Re\ P(z) > 0, z \in U$.

Let α be a complex number, with $Re \alpha > 1$ and $f, g \in H(U)$. Consider the integral operator $I: H(U) \to H(U)$ denote by F(z) = I(f; g)(z) where

$$F(z) = \frac{\alpha + 1}{z^{\alpha}} \int_0^z (f(t)e^{g(t)})^{\alpha} dt.$$
 (1)

Many researchers have investigated many properties of integral operators for example, Ch.Orose and G.I.Oros [10] proved that the operator

$$F(z) = \frac{1}{|g(z)|^c} \int_0^z f(w)g(w)^{c-1}g'(w)dw \ z \in U, f \in H(U),$$

where $g \in H(U)$, with g(0) = 0; $g'(0) \neq 0$ and $g(z) \neq 0$, for 0 < |z| < 1 preserves the convexity with g satisfies the conditions

$$Re\frac{czg'(z)}{g(z)} > 0$$

and

$$Re\left[1 + \frac{zg''(z)}{g'(z)}\right] > Re(c+1)\frac{zg'(z)}{g(z)}.$$

It is well-known that in particular case g(z) = z and c = 1, Libera [3] proved that the integral operator I preserves the starlikrness,the convexity and the close-to convexity. This remarkable result was extended by many other authors (see, forexample [1],[2],[4],[5],[6],[7]). In the case c = 1, sufficient conditions on the function g such that I is a convexity-preserving operator were given in [8].

In [9] the author shows that if g satisfies the condition

$$Re\frac{czg'(z)}{g(z)} > 0$$

in U and if the integral operator I preserves the convexity, then I also preserves the close-to-convexity.

In this paper we will show that if F satisfies the conditionsn

$$Re \frac{F(z)}{zF'(z)} > 0$$

and

$$Re\left(\frac{\alpha F(z)}{zF'(z)}\right) > Re\left(\frac{\alpha^2 F(z)}{F'(z)} + (2\alpha + 1)\right)$$

in *U* and if *F* preserves the close-to-convexity, the *F* is also preserves the convexity.

Main Result

we begin by rewrite the integral operator I(f, g)(z) by

$$F(z) = I(f,g)(z) = \frac{\alpha+1}{z^{\alpha}} \int_0^z H(t)d(t), \quad z \in U$$
 (2)

Theorem 2.1. Let F be the integral operator defined by (2) and suppose that.

$$(i)Re\frac{F(z)}{zF'(z)} > 0, z \in U, Re\alpha > 1,$$

(ii)
$$Re \frac{F(z)}{zF'(z)} > Re \left(\frac{\alpha^2 F(z)}{F'(z)} + (2\alpha + 1)\right)$$

(iii)
$$F(C) \subset C$$

then

 $F(K) \subset K$.

Proof. It is clear that $H(z) \in H(U)$ and $H(z) \neq 0$ in U. From (2) we obtain

Proof. It is clear that
$$H(z) \in H(U)$$
 and $H(z) \neq 0$ in U . From (2) we obtain
$$F'(z) \frac{z^{\alpha}}{\alpha + 1} + \frac{\alpha z^{\alpha + 1}}{\alpha + 1} F(z) = H(z),$$
(3)
$$\text{let } h(t) = \frac{z^{\alpha + 1}}{\alpha + 1}, \text{ then (3) become}$$

$$zF'(z)h(z) + \alpha F(z)h(z) = H(z)$$

differentiating last equation, we obtain

$$zF''(z)h(z) + zF'(z)h'(z) + F'(z)h(z) + \alpha h(z)F'(z) + \alpha h'(z)F(z) = H'(z)$$

which is equivalent to

$$F'(z)h(z)\left[\frac{zF''(z)}{F'(z)} + \frac{zh'(z)}{h(z)} + (1+\alpha) + \frac{\alpha h'(z)F(z)}{h(z)F'(z)}\right] = H'(z)$$

Let $H \in C$. Then there exists $\psi \in K$ such that

$$Re\frac{H'(z)}{\psi'(z)} > 0, \quad z \in U.$$

If we denote $\beta = I(\psi)$, then

$$\beta(z) = \frac{\alpha + 1}{z^{\alpha}} \int_0^z \psi(t) d(t), \qquad z \in U.$$
 (4)

Next we prove $\beta \in K$. rentiating (4), we obtain

$$\beta'(z)h(z)\left[\frac{z\beta''(z)}{\beta'(z)} + \frac{zh'(z)}{h(z)} + (1+\alpha) + \frac{\alpha h'(z)\beta(z)}{h(z)\beta'(z)}\right] = \psi'(z). \quad (5)$$

If we let

$$P(z) = \frac{z\beta''(z)}{\beta'(z)} + \frac{zh'(z)}{h(z)} + (1+\alpha) + \frac{\alpha h'(z)\beta(z)}{h(z)\beta'(z)}, \quad z \in U$$
 (6)

then (5) becomes

$$\beta'(z)h(z)P(z) = \psi'(z) \qquad z \in U. \tag{7}$$

Differentiating (7), we obtain

$$\frac{z\beta''(z)}{\beta'(z)} + \frac{zh'(z)}{h(z)} + \frac{zP'(z)}{P(z)} = \frac{z\psi''(z)}{\psi'(z)}, \quad z \in U$$

which is equivalent to

$$\frac{z\beta''(z)}{\beta'(z)} + \frac{zh'(z)}{h(z)} + \frac{zP'(z)}{P(z)} + (\alpha + 1) + \frac{\alpha\beta(z)h'(z)}{h(z)\beta'(z)} = \frac{z\psi''(z)}{\psi'(z)} + (\alpha + 1) + \frac{\alpha\beta(z)h'(z)}{h(z)\beta'(z)}, \quad z \in U \quad (8)$$

Using (6) in (8), we obtain

$$P(z) + \frac{zP'(z)}{P(z)} = \frac{z\psi''(z)}{\psi'(z)} + (\alpha + 1) + \frac{\alpha\beta(z)h'(z)}{h(z)\beta'(z)}, \ z \in U$$
 (9)

Using condition (i) from hypothesis, since ψ is convex and $h = \frac{z^{\alpha+1}}{\alpha+1}$ we have

$$Re\left[P(z) + \frac{zP'(z)}{P(z)}\right] = Re\left[\frac{z\psi''(z)}{\psi'(z)} + 1 + \alpha + \frac{\alpha(\alpha - 1)\beta(z)}{z\beta'(z)}\right], \qquad z \in U \quad (10)$$

i.e

$$Re\left[P(z) + \frac{zP'(z)}{P(z)}\right] > 0, \quad z \in U.$$

Letting z=0 in (10), we get

$$ReP(0) > 0, z \in U.$$

We have now the conditions from the hypothesis of Lemma 1.1 and applying it we obtain

$$ReP(0) > 0$$
, $z \in U$.

Using (6) and the condition $ReP(0) > 0, z \in U$: We obtain

$$Re\left[\frac{z\beta''(z)}{\beta'(z)} + \frac{zh'(z)}{h(z)} + (1+\alpha) + \frac{\alpha h'(z)\beta(z)}{h(z)\beta'(z)}\right] > 0$$

and using (ii) and $h = \frac{z^{\alpha+1}}{\alpha+1}$ we obtain

$$Re\left[\frac{z\beta^{\prime\prime}(z)}{\beta^{\prime}(z)}+1\right] > -2\alpha+1-\frac{\alpha(\alpha-1)\beta(z)}{z\beta^{\prime}(z)} > 0, \quad z \in U$$

i.e

$$Re\left[\frac{z\beta''(z)}{\beta'(z)} + 1\right] > 0, \quad z \in U$$

which shows that $\beta \in K$.

References

- [1] S.M. Bernardi, Convex and starlike univalent functions. *Trans. Amer. Math.* Soc. **135** (1969), 429-446.
- [2] W.M. Causey and W.L. White, Starlikeness of certain functions with integral representations. *J.A.M.A.* **64** (1978), 458-466.
- [3] R.J. Libera, Some classes of regular univalent functions. *Proc. Amer. Math.*Soc. **16** (1965), 755-758.
- [4] E.P. Merkes and D.J. Wright, On the univalence of a certain integral. Proc. *Amer. Math. Soc.* **27** (1971), 97-100.
- [5] S.S. Miller, P.T. Mocanu and M.O. Reade, Starlike integral operators. *Pacic J. of Math.* **79**, No 1 (1978), 157-168.
- [6] S.S. Miller, P.T. Mocanu and M.O. Reade, A particular starlike integral operator. *Studia Univ. Babes-Bolyai***22**, No 2 (1977), 44-47.
- [7] S.S. Miller, P.T. Mocanu and M.O. Reade, On some particular classes of starlikeintegral operators. *Babes-Bolyai Univ., Fac. of Math., Seminar of GeometricFunction Theory*, Preprint No 4 (1982), 159-165.
- [8] P.T. Mocanu, Convexity and close-to-convexity preserving integral operators. *Mathematica (Cluj)* **25** (48), No 2 (1983), 177-182.
- [9] P.T. Mocanu, On a close-to-convexity preserving integral operator. *Math-ematica* (Cluj)**2** (1987), 49-52.
- [10] G.Oros and G.I.Oros,On convexity preserving integral operator. *International Journal for Throry and Applications*, **13**, No 5 (2010), 1311-0454.