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Abstract

In this paper we prove that if a finite number of crisp sequences converges to
some limit then there exists a fuzzy sequence converges to the same limit, and the
convers is true.

Keywords: Metric space; Fuzzy sequence.
Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965 [2], and since then
there has been tremendous interest in the subject due to its diverse applications
ranging from engineering and computer science to social behavior studies. Therefore,
new concepts was introduced such as Fuzzy topological spaces in [3], Fuzzy metric
spaces in [4].

As it is known, sequence in a metric space provides a natural framework for
studying the paramount analyticities of a functions defined over them. Consequently,
a new concept of fuzzy sequences in metric spaces, and convergent property
established in [1].

The propose of this note is to prove the extension of theorem 8 stated in [1].
Preliminaries:

Definition: Let X # @, A sequence fin X is a function from N to X. i.e:fiN - X.
Definition: Let X # @. A fuzzy sequence F in X isdefinedas F:N x X — [0,1].

Example: Let X =N, F:N XN — [0,1] such as that F(n,x) = ! forallneN

2n+x2

and x € X .The following theorem gives the relation between the above concepts.
Theorem: Every crisp sequence in X is a fuzzy sequence in X.
Proof
letX + @. Let S = {f:fisacrispinX}, and A = {F:F is a fuzzy sequence in X}.
Define T:S — F. Now choose any f € S where f: N — X and consider

(1 f(n)=x
F(n,x) = {O; otherwise
f, # f,. Then there exists n. € N where f; (n.) # f,(n.). Let f;(n.) = x, and f,(n.) =
y, which implies F(n.,x) = 1 and F(n.,y) = 0. Hence T(f), # T(f,). Thus T is one-
one. Therefore, every crisp sequence is a fuzz sequence.
Result: Converse of the previous theorem is not true.

1

Example : Let X = Z. Define F: N x X - [0,1] as F(n,x) = — It is obvious that

F is a fuzzy sequence but it is not a crisp sequence. The following theorem gives some
conditions that make a fuzzy sequence be a crisp sequence.
Theorem: Let X # @. A fuzzy sequence F on X is a crisp sequence if satisfies the
following.

1. F(n,x) = 0or1forall n € Nand for all x € X.

2. For each n € N, there exists unique x in X such that F(n,x) = 1.
Proof
Let F be a fuzzy sequence on X satisfies the given conditions. Using condition 2, we
can define a crisp sequence fon as f(n) = x if F(n,x) = 1. Now we attempt to show
Fe=F. In case F¢(n,x) =1 then f(n) =x. Then F(n,x) = 1. Hence F¢(n,x) =
F(n,x). If F(n,x) =0 this means f(n) # x, implies F(n,x) # 1. therefor

, which is a fuzzy sequence. Now let f;,f, € S such that

356



s A Aaa

Further Proof on Fuzzy Sequences on Metric Spaces 13 aaadl
F(n,x) = 0. Then F¢(n,x) = F(n, x). Thus, there exists f: N -
X as Fr = F. Hence F is a crisp sequence.

Convergence

Definition: Let (X,d) be a metric space and let F be a fuzzy sequence on X. Let a €
(0,1] ,a € X.Fis converges to a at level a if:
1. foreach n € N, there exists at least one x € X as F(n,x) = a.
2. Given e > 0, there isn. € N such that d(x,a) < € for all n > n. and for all x €
X with F(n,x) > a.

Example: Take R with the usual metric.
Define F:N x X — [0,1]

1

as:Fz{l' X = . TheclaimisF = 0.
0; otherwise

Take any o € (0,1]:

1. foreachn €N, x =i € IR as F(n,%) > .

2. Let £€>0. Take n. € N such that n. > 1/3- Let n > n. and F(n,x) = a.
d(x,a) = |x—a|l = |x— 0| = [x].
n=>n.and F(n,x) > a = n> 1/3 andF(n,x) =1 =n> 1/8 andxzi.

Hence d(x,a) = x| = |%| = % < e Given &> 0 there exists n. € N such that

d(x,0) < e forall n > n. and for all n = n. and x € X withn > n. and F(n,x) = «.
Theorem: Let f be a crisp sequence in a metric space X. Then f converges to 1 if and
only if the fuzzy sequence F¢ converges to 1 at some level a > 0.
Proof
Let f be a crisp sequence in a metric space X. Then f can be considered as a fuzzy
sequence Fg and let f converges to 1. Now take o > 0. Let € > 0. Therefore the crisp
sequence fconverges to 1, there exists n. € N such that d(x,,1) < € for all n > n..
Note that Fe(n,x) = 0 or Fe(n,x) = 1forall neN,x e X

1. Foreachn € N,x =x,asFe(n,x) =1 = a.

2. When n > n. and F¢(n,x) = «, gives n > n. and F¢(n,x) = a. Which leads to

X =%, . Now d(x,1) =d(x,,1) < & Given € > 0, there exists n. € N such
that n > n. and F¢(n, x) > a, implies d(x, 1) < &. Hence F; converges to 1.

To prove the other side, let f be a crisp sequence in X. Let F¢ be the corresponding
fuzzy sequence . Let F¢convergesto 1 at level a > 0. Let € > 0 be given.
Since F¢ converges to 1 there exists n. € N such n > n. and F¢(n,x) = a, implies
d(x,1) < eNow F¢(n,x) = a and a > 0 implies that F¢(n,x) =1, then x = x,.
Hence d(x,,1) < .
Now, given &€ > 0 there exists n. € N such that d(x,, 1) < € for all n > n.. Hence
the crisp sequence f converges to 1.
Theorem: Let a,, b, be two crisp sequences in a metric space X. Let F be the fuzzy
1, x=ajorx= b,
0; otherwise
Then F converges to 1 at any level a > 0 if and only if a,, b, converge to same
limit 1.
Proof

sequence defined as F = {
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Let a,, b, are crisp sequences converge to I. From the definition of F, for all n € N
there exists a, € X such that F¢(n,a,) =1, therefore F¢(n,a,) = a. Since a,
converges to 1 converges to , there exists n; € IN such that d(a,1) < e for all n >
n,. Since b, converges to 1, there, exists n, € IN such that d(b,1) < € for all n >
n,. Let no = max{ny,n,}. Now let n > n. and F(n,a,) = a Since a > 0, F(n,x) >
a, implies F(n,x) > 1, and hence x =a, or x=b, . Since n >n,, d(a,, 1) <e.
Since n > n, , d(b,, 1) < &. Hence d(x,1) < &. Therefor given & > 0, there exists
n. € N such that n>n. and F(n,x) = a implies d(x,1) < &. Hence the fuzzy
sequence F converges to 1 at any level a > 0.
Conversely: Let € > 0. As F converges to 1, there is n. € N such that F(n,x) > «,
n > n.. Hence d(x,1) < e. Letn > n., F(n,x) = 1 = a. Therefore d(a,,1) < €. Thus
a, converges to 1. The convergence of b,, can be proven in a Similar way.
An extension of the previous theorem is stated next.
Theorem: Let {a,X:k € {1,2, ..., m} be a collection of crisp sequences in a metric
space X . Let F be a fuzzy sequence in X defined as F(n,x) = 1 if x = a,* for some k,
and F(n,x) = 0 otherwise. converges if and only if for each k,a,* converges to the
same limit.
Proof
Let a,X - 1; k={1,2,..,m}. Let F be a fuzzy sequence in X defined as F =
{1; x=a,*->Lk={12,.
0; otherewise
a,* for each k such that F(n,a,*) = 1. Hence F(n,a,*) = « for each k . Now let
e > 0 be given . Since a,X converges to 1 for each k, there exists n, € N such that
d(ay®, 1) < & for all n > ny. Now let n. = max{ny}. Now let n > n., F(n,x) = a.
Since o > 0, F(n,x) > a implies F(n,x) = 1 and hence x = a,* for some k . Since
n > ny for each k, there d(a,X, 1) < e Hence d(x, 1) < «.
Converse: Let {a,*} be a collection of crisp sequences in a metric space X, k =
1; x= ank, for some k
0; otherewise’
If Fconverges to 1 at some level a > 0. Claim a,X converges to 1 for all k. Let & >
0 be given. Since F converges to 1, there exists n. € IN such that n > n. and
F(n,x) > a implies d(x,1) < &. Take ny = n., F(n,a,%) = 1 > « For all k. Hence
d(ank, 1) <e for all k. Let n. = max{ng,k =1,2...,m}. Hence d(ank, 1) <.
Hence, given & > 0, there exists n. € IN such that d(a,*, 1) < & for all n > n.. There
for {a,X} converge to 1 for all k.

"m}. By definition of F, for each n € N there exist

{1,2, ..., m}. Let F be a fuzzy sequence defined as: F = {
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