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A B S T R A C T  

Adaptive controllers have a lot of advantages over conventional ones, especially when 
the model of the plant to be controlled is unknown or changes with time. This paper 
proposes a control scheme for multiple adaptive Self-Tuning Pole-Placement 
controllers using both the classical technique via transfer function and the modern 
technique using discrete state-space. This approach enables the user to switch between 
the classical and modern techniques in order to control the estimated plant model on-
line; the switching mechanism ensures a smooth transition amongst the two pole-
placement controllers. 
The performance of the proposed control scheme on the closed-loop performance of 
an antenna system, controlling its elevation, is demonstrated. Simulation results 
demonstrating the effectiveness of the switching mechanism between different 
controllers are presented. A Graphical User Interface is built to facilitate the controller 
programming and allowing the simulation of multiple adaptive controllers. 

Keywords:  Adaptive Self-Tuning Control, Discrete State-Space , Pole-Placement Control , Antenna Elevation Control. 

1 Introduction 

Control systems design techniques typically require an in-depth understanding of the plant 
under study and its environment. In some applications, however, the plant to be controlled 
is sophisticated and the involved physical processes are changeable with time and operating 
conditions. To deal with such situations, different approaches of adaptive control are 
proposed to tune the controller parameters and behavior in response to the physical 
processes changes [1]. Self-tuning controllers represent an important class of adaptive 
control since they provides systematic and flexible approaches for dealing with many 
difficulties including time varying parameters, non-linearity, and uncertainties. Recently, 
there has been increasing interest in pole-placement self-tuning controllers due to the fact 
that in the regulator case, they provide mechanisms to overcome the restriction to minimum 
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phase plants of some optimal controllers. In the servo case, they give the ability to directly 
introduce the natural angular frequency 𝜔"  and damping ratio 𝜁  as tuning parameters. 
Moreover, robustness is an essential advantage of pole-placement methods, as they simply 
modify the system dynamics instead of cancelling them as applied in optimal self-tuning 
controller [2]. However, the main drawbacks of self-tuning pole-placement controller are 
based on transfer function approach and also their inability to regulate steady-state error in 
the presence of constant disturbances. The transfer function approach depends on 
polynomial algorithms, which are slow to emerge [3]. In contrast, the linear algebraic tools 
that are required by state-space techniques are a lot more advanced and more suitable for 
optimal control design [1][4]. Therefore, the state-space technique is preferred over the 
transfer function approach, especially for multivariable and non-linear systems [5]. The main 
contribution of this paper is to develop a control scheme for multiple adaptive Self-Tuning 
Pole-Placement controllers using both the classical technique via transfer function and the 
modern technique using discrete state-space framework. In order to assess the performance 
of the proposed scheme, it is applied to single-input-single-output of an antenna model. 

2 A Servomechanism for an Antenna Elevation Control  

It is desired to control the elevation of an antenna designed to track a geostationary satellite 
as sketched in Figure 1. The antenna and drive parts have a moment of inertia J%  and 
damping B' arising to some extent from bearings and aerodynamic friction, but mostly from 
the back emf	 V 	of the DC-drive motor [6,7,8]. 

 
Figure 1: Schematic Diagram of Antenna System 

 
Figure 2 shows the internal connection of DC-drive motor with the antenna system. Here, 
the armature inductance 𝐿.	 𝐻  is negligible because it is usually small. The continuous 
transfer function [7], [8] can be given by: 

𝜃 𝑠 = .
3 34.

𝑈 𝑠 + 𝜉% 𝑠 						 (1)  

where 𝜉% 𝑠  is the torque disturbance due to wind, and 𝑈 𝑠  is the torque due to the DC 
motor. 
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Figure 2: The Connection of DC-drive Motor with the Antenna System 

 
The aim of the design is to measure the error between the angle of the satellite 𝜃3 𝑡 	 𝑟𝑎𝑑  
and the antenna 𝜃 𝑡 	 𝑟𝑎𝑑  and compute 𝑢 𝑡 	so that the error 𝑒 , i.e. equals to 𝜃3 𝑡 −
𝜃 𝑡 	 𝑟𝑎𝑑 , is always less than 0.001	𝑟𝑎𝑑 during tracking. The geostationary satellite angle 
that must be followed can be adequately approximated by a fixed velocity. 

𝜃3 𝑡 = 0.01𝑟𝑎𝑑/𝑠𝑒𝑐 ×	𝑡 𝑠𝑒𝑐 . 
The discrete model of the Antenna system can be written as:  

𝜃 𝑧 = 	 .GHIJ4K
LMNH O4 JIKLMNHI.GHKLMNH

. OIJ OIKLMNH
𝑈 𝑧 + 𝜉% 𝑧 															 (2)	

A discrete state-space [9] of antenna tracking control model in which the time constant a =
0.1, and 𝑇3 = 1	sec is: 
𝑋J 𝑡 + 1
𝑋U 𝑡 + 1

= 0 1
−0.9048 1.905

𝑋J 𝑡
𝑋U 𝑡

+ 0.04837
0.13895 𝑢 𝑡 + 0.04837

0.13895 𝜉%                (3) 

𝑦 𝑡 = 1 0
𝑋J 𝑡
𝑋U 𝑡

                                   (4) 

In (3), 𝑋J 𝑡  is the position (rad)and 𝑋U 𝑡  is the velocity (rad/sec) of the antenna. 

3 Adaptive Control Algorithm 

The Controlled Auto-Regressive Moving Average (CARMA) process model [10] is described 
as: 
𝐴 𝑧IJ 𝑦 𝑡 = 𝑧I^𝐵 𝑧IJ 𝑢 𝑡 + 𝐶 𝑧IJ 𝜉% 𝑡                                               (5) 
Assume that the polynomials 𝐴 𝑧IJ  and 𝐵 𝑧IJ  are co-prime, i.e. they do not have any 
common factors. Furthermore, 𝐴 𝑧IJ , 𝐶 𝑧IJ 	are monic, i.e. the coefficient of the highest 
power is unity [11]. The classical pole-placement controller can be described by the following 
control-law: 
𝑞 𝑧IJ 𝑢 𝑡 = 𝐻 𝑧IJ 𝑟 𝑡 − 𝐹 𝑧IJ 𝑦 𝑡 	                                     (6) 
where	𝑞 𝑧IJ , 𝐹 𝑧IJ 	and 𝐻 𝑧IJ  are polynomials in the back shift operator	𝑧IJ. 
The controller has two degrees of freedom, the first is a feed forward with the transfer 

operator	c OLd

e OLd
 and the second is a feedback with the transfer operator 	f OLd

e OLd
. A block 

diagram of the closed-loop system is shown in Figure 3. The controller polynomials 𝐻 𝑧IJ ,  
𝐹 𝑧IJ  and 𝑞 𝑧IJ  are designed to ensure fast output tracking of the reference signal 𝑟 𝑡 . 
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Figure 3: Classical Discrete Pole-Placement Controller 

 
The closed-loop characteristic polynomial of the system (Diophantine equation) is [4]:  

𝑞 𝑧IJ 𝐴 𝑧IJ + 𝑧I^𝐵 𝑧IJ 𝐹 𝑧IJ = 𝑇g 𝑧IJ 𝐶 𝑧IJ                                (7)                          
The main concept of the pole placement controller design is to specify the desired closed-
loop poles polynomial	𝑇g 𝑧IJ 		as a design parameter. By solving the Diophantine equation 
(7), the polynomials 𝑞 𝑧IJ  and 𝐹 𝑧IJ  can be obtained. The closed-loop poles polynomial 
𝑇g 𝑧IJ 	fundamentally determines the property and the performance of the closed system 
[11].  
The desired closed loop poles polynomial 𝑇g 𝑧IJ  and the controller parameters 
polynomials  𝐹 𝑧IJ  and 𝑞 𝑧IJ  are expressed in terms of 𝑧IJ as follows: 
𝐹 𝑧IJ = 𝑓i + 𝑓J𝑧IJ + ⋯+ 𝑓"MIJ𝑧

I"k4J + 𝑓"k𝑧
I"k                             (8)     

𝑞 𝑧IJ = 1 + 𝑞J𝑧IJ + ⋯+ 𝑞"lIJ𝑧
I"l4J + 𝑞"l𝑧

I"l                            (9)   

𝑇g 𝑧IJ = 1 + 𝑡J𝑧IJ + ⋯+ 𝑡"mIJ𝑧
I"m4J + 𝑡"m𝑧

I"m                     (10)      

where, the parameters 𝑡J and 𝑡U are specified as following [11]: 

𝑡J = −2𝑒𝑥𝑝 −𝜁𝜔"𝑇3 cos 𝑇3𝜔" 1 − 𝜁U                                                              

𝑡U = −2𝑒𝑥𝑝 −𝜁𝜔"𝑇3                                                                                              
Where 𝜁	and 𝜔"	are respectively the damping ratio and natural angular frequency of the 
second order closed loop transient response and 𝑇3 is the sampling time. In order to have a 
unique solution, the polynomials 𝐹 𝑧IJ , 𝑞 𝑧IJ  and 𝑇g 𝑧IJ  in the equations (8), (9), and 
(10) are specified as follows: 
𝑛e = 𝑛s + 𝑘 − 1																					
𝑛u = 𝑛. − 1																													
𝑛v ≤ 𝑛. + 𝑛s + 𝑘 − 𝑛g − 1

                    (11) 

Substituting Diophantine equation (7) into equation (6), the following equation is obtained: 

𝑦 𝑡 = OLxy OLd c OLd

Gz OLd { OLd
𝑟 𝑡 + e OLd

Gz OLd
𝜉% 𝑡 	                                             (12)          

It can be seen from equation (12) that the closed loop poles are placed at their pre-specified 
positions given by the desired closed loop poles polynomial	𝑇g 𝑧IJ 	which represents the 
design parameter. The controller algorithm explained above can be structured as a self-
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tuning controller as shown in Figure 4. Where, all of the controller’s parameters are 
calculated depending on the change in plant parameters. 

 
Figure 4: Classical Self-Tuning Pole-Placement Controller 

  
The modern Self-Tuning Pole-Placement using discrete state-space control design algorithm 
is given in Figure 5, which is based on an on-line observer with a state feedback [6]. 

 
Figure 5: Shows the modern Self-Tuning pole-placement controller. 

 
Both an on-line observer poles and the closed-loop system poles are placed based on the 

model parameters 𝜃  obtained from the on-line identification scheme (RLS or ERLS 

estimators). In Figure 5, the proper dc gain 𝑁 𝜃  is introduced on-line into the design in the 

presence of reference signal 𝑟 𝑡 	to eliminate the output steady state error. A discrete state-
space model of any system can be derived and presented in discrete matrix-vector equation 
as follows: 
𝑋 𝑡 + 1 = 𝑨𝑋 𝑡 + 𝑩𝑢 𝑡 + 𝑪𝜉% 𝑡              (13) 
𝑦 𝑡 = 𝑬𝑋 𝑡 + 𝑏i𝑢 𝑡 + 𝜉% 𝑡                (14) 
The values of both control input signal 𝑢 𝑡  and system output signal 𝑦 𝑡  are read for 
every sampling instant; these values are used for on-line identification methods such as (RLS 
or ERLS estimators). An on-line identification method can be used to estimate plant 

parameters	𝜃 which are then used to identify state-space model as:  

𝑋 𝑡 + 1 = 𝑨 𝜃 𝑋 𝑡 + 𝑩 𝜃 𝑢 𝑡 + 𝑪 𝜃 𝜉% 𝑡                                               (15) 

𝑦 𝑡 = 𝑬 𝜃 𝑋 𝑡                                        (16)  

where, the estimated plant parameters𝜃 = −𝑎J − 𝑎U ⋯− 𝑎"M			𝑏i	𝑏J	𝑏U ⋯ 𝑏"�			𝑐J	𝑐U ⋯ 𝑐"z
G

. 
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The matrices of equations (15) and (16) can be placed in either plant framework or observer 
framework [7]. 
The transparent controllable canonical form is illustrated as follows: 
𝑋 𝑡 + 1 = 𝑨g 𝜃 𝑋 𝑡 + 𝑩g 𝜃 𝑢 𝑡 + 𝑪g 𝜃 𝜉% 𝑡                          (17) 

𝑦 𝑡 = 𝑬g 𝜃 𝑋 𝑡                           (18) 
where:      

𝑨g 𝜃 =

0
0
⋮
0

−𝑎"M

1
0
⋮
0

−𝑎"MIJ

0
1
⋮
0

−𝑎"MIU

…
…	
	
…

0
0
⋮
1
−𝑎J

, 𝑩g 𝜃 =
0
0
⋮
1

,                                                                                                              

𝑬g 𝜃 = 𝑏"� 𝑏"�IJ ⋯ 𝑏J  and 𝑪g 𝜃 = 𝑐"z 𝑐"zIJ ⋯ 𝑐J                                                                                
The transparent observable canonical form can be represented as: 

𝑋 𝑡 + 1 = 𝑨� 𝜃 𝑋 𝑡 + 𝑩� 𝜃 𝑢 𝑡 + 𝑪� 𝜃 𝜉% 𝑡                        (19)  

𝑦 𝑡 = 𝑬� 𝜃 𝑋 𝑡                                    (20)   
Where  

𝑨� 𝜃 =
0
1
⋮
0

0
0
⋮
0

…
…
	
…

0
0	
1

−𝑎"M
−𝑎"MIJ

⋮
−𝑎J

, 𝑩� 𝜃 =

𝑏"�
𝑏"�IJ
⋮
𝑏J

, 𝑪� 𝜃 =

𝑐"z
𝑐"�IJ
⋮
𝑐J

 and

 𝑬� 𝜃 = 0 0 ⋯ 0 1   
The on-line controller design in discrete state-space based on one framework allows 
calculating a matrix 𝑇 𝜃  that transforms between canonical frameworks, which is given as:  

	𝑅g 𝜃 = 𝑬g 𝜽 	 𝑬g 𝜽 	𝑨g 𝜽 	 ⋯ 𝑬g 𝜽 	𝑨g𝒏I𝟏 𝜽 	                

𝑅�IJ 𝜃 =

𝑎J
𝑎U
⋮

𝑎"IJ
1

	

𝑎U
⋯
⋮
1
0

	

	⋯ 𝑎"IJ
𝑎"IJ 1
1 						0
0
0 						00

1
0
0
0
0

	 ,	  𝑇 𝜃 = 𝑅�IJ 𝜃 ×	𝑅g 𝜃       (21) 

where, 𝑇 𝜃  is the transformation matrix between transparent canonical frameworks,	𝑅g 𝜃  

is the observability matrix of transparent controllable canonical form and 𝑅�IJ 𝜃  is the 
inverse observability matrix of transparent observable canonical form. 
The estimated state vector 𝑋g 𝑡 	of an on-line observer of transparent controllable canonical 
form (plane framework) can be evaluated as follows: 

𝑋g 𝑡 + 1 = 𝑨g 𝜽 𝑋g 𝑡 + 𝐿g 𝜽 𝑦 𝑡 − 𝑬g 𝜽 	𝑋g 𝑡 + 𝑩g 𝜽 𝑢 𝑡          (22) 

The on-line observer gain matrix 𝐿 𝜽  can be easily calculated by using transparent 

observable canonical form [7], therefore, the on-line observer gains 𝐿 𝜽  is transformed to 
transparent controllable canonical form to be used in equation (22) as follows: 
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 𝐿g 𝜃 = 𝑇×𝐿� 𝜃 = 𝑇×

𝐿�d 𝜃
𝐿�� 𝜃
⋮

𝐿�� 𝜃

= 𝑇×

𝑎"M − 𝜎� "
𝑎"MIJ − 𝜎� "IJ

⋮
𝑎J − 𝜎� J

=

𝐿gd 𝜃
𝐿g� 𝜃
⋮

𝐿g� 𝜃

         (23) 

The equation of the transparent controllable canonical form gain 𝑲g 𝜃  can be written as:  

𝑲g 𝜃 = 𝐾gJ 𝜃 , 𝐾gU 𝜃 ⋯ 𝐾g" 𝜃 	

= 𝑎"M − 𝛼g " , 𝑎"MIJ − 𝛼g "IJ ⋯ 𝑎J −𝛼g J                    (24) 
The proper dc gain 𝑁 can be calculated as follows: 

𝑁 𝜃 	
IJ
= −𝑬𝒄 𝜃 𝑨𝒄 𝜃 − 𝑩𝒄 𝜃 𝑲g 𝜃 − 𝑰

IJ
𝑩𝒄 𝜃                   (25) 

Referring to Figure (7), the control-law can be generated as follows: 

𝑢 𝑡 = 𝑁 𝜃 𝑟 𝑡 − 	𝑲g 𝜃 𝑋g 𝑡                (26) 
The algorithm of Self-Tuning Observer Pole-placement with Reference Signal and Proper 
DC Gain can be summarized as follows: 
Step 1: Select the desired control-low characteristic equation	𝛼g 𝑧 	and the desired observer 
characteristic equation	𝜎� 𝑧 . 
Step 2: Read the new values of 𝑦 𝑡  and	𝑢 𝑡 . 

Step 3: Estimate the process parameters θ using recursive least squares estimator or extende-
d recursive least squares estimator and formulate a state-space model of the 

plant	 A� θ , B� θ , E� θ , C� θ  using equations (17) and (18). 

Step 4: Evaluate 𝐿g 𝜃  using equation (23). 

Step 5: Estimate the state vector 𝑋g 𝑡  using equation (22). 

Step 6: Calculate  𝑲g 𝜃  using equation (24). 

Step 7: Compute 𝑁 𝜃  using equation (25). 
Step 8: Apply the control input signal using equation (26). 
Step 2 to 8 are repeated for every sampling instant. 
 
Both the modern self-tuning pole-placement, shown in Figure 6, and the classical controllers 
were programmed as multiple controller algorithms. The design provides a choice of using 
either classical or modern pole-placement controller on-line throughout the flick of 
switches	 SJ, SU . The switching (transition) decision between these different fixed structure 
controllers is achieved manually in order to demonstrate the feasibility of the proposed 
approach. Each control mode can be switched on with the flick of the switches depending 
on the user’s choice, whereas the other controller is at standby. This design also, provides 
the possibility to choose an on-line identification method such recursive least squares (RLS) 
or extended recursive least squares (ERLS) estimators. 
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Figure 6: Multiple Self-tuning Controllers 

 

4 Simulation Results 

The main aim of developing a GUI is to simplify the control algorithms discussed in 
previous section so that the simulations can be carried out by users who do not even have a 
previous knowledge about the algorithms of self-tuning controllers. Thus, controller tuning 
and evaluation of the closed-loop performance can be realized interactively using the GUI in 
a user-friendly environment as shown in Figure 7. 

 
Figure 7: Multiple Controllers GUI 

 
To study the response of the antenna output using multiple controllers, a simulation was 
carried out using the system described by the discrete state-space equations (8) and (9). The 
simulation was performed using recursive least squares estimator over 350 samples with a 
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sample time of 1s (approximately 6 minutes) to track a rectangular signal (in dotted black 
line). The desired set point is a square wave signal that has peak values of 1 and -1 with a 
duration of 100 samples. The signal and the response using the Modern Self-Tuning 
Observer Pole-Placement controller is shown in the first 150 sample instants in Figure 8-a. 
The response of the system using the Classical Self-Tuning Pole-Placement controller is used 
after the 150th sample. The control input for the two cases are shown in Figure 8-b. Figures 
8-a shows that these controllers are matched without any transient behaviour during 
switching mode. 

 
(a)       (b) 

Figure 8: (a) Antenna outputs response for multiple controllers, (b) Multiple control input to the 
Antenna system 

 
Another simulation was performed over 400 samples (approximately 7 minutes) using 
recursive least squares (RLS) estimator to track a triangular signal changes from 1 to 0 and 
from 0 to 1 every 100 samples instants. In this simulation, the classical self-tuning pole 
placement controller was switched on at 150th sampling instant, whereas the modern 
STOPPRI controller was used in first part of intervals as shown in Figure 8 and Figure 9. 
 

 
(a)      (b) 

Figure 9: (a) Antenna System Output using modern and classical Controllers (b) Control Input of 
the Antenna System using classical and modern adaptive Controllers 

 
In Figure 9-b, a small transient behaviour appeared at the 150th sampling instant during 
switching between modern and classical self-tuning controllers which does not affect the 
antenna response as shown in Figure 9-a and disappeared at steady-state region.  

Desired reference 
Response 

Desired reference 
Response 
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5 Conclusions 

A multiple controller scheme incorporating an adaptive mechanisms using classical transfer 
function technique and modern discrete state-space technique was designed The scheme was 
simulated with the application to antenna model controlling its elevation. This scheme 
enables the user to effectively switch between the classical and modern controllers. Once the 
desired controller is selected to be on-line, the other controller remains standby to ensure 
robust control performance in the presence of controller failure. Simulation testing the 
proposed method were carried out and shows the performance of the proposed technique. 
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