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Abstract: Functional analysis is one of the most important branches of modern Mathematics
and Physics. In functional analysis, Hilbert spaces have a great and positive influence in the
development of functional analysis. Hilbert spaces have a rich geometric structure because
they are endowed with a scalar product which allows the introduction of the concept of
orthogonality of vectors. The aim of this paper is to introduce the Hilbert spaces, and their
properties, operations, and applications. We first give an introduction about functional
analysis and highlight the importance of Hilbert spaces in the development of functional
analysis. Then, we focus on significant and crucial spaces for Hilbert spaces called Banach
Spaces. We do so by studying normed spaces and their properties. Finally, we discuss what is
meant by Hilbert spaces and what is the relation between Hilbert and Banach spaces.

Keywords: Functional analysis, Hilbert Space, Banach Spaces.

1. INTRODUCTION

Mathematics is the queen of science and the language of nature. Also, it occupies and plays
a crucial and important role in the human societies. Moreover, it represents a strategic key in
the development of the whole world and mankind. It has roots in ancient Egypt and Babylonia,
then grew rapidly in ancient Greece. Mathematics written in ancient Greek was translated into
Arabic. About the same time some mathematics of India was translated into Arabic. Later
some of this mathematics was translated into Latin and became the mathematics of Western
Europe and then after a hundred years it became the mathematics of the whole world. In fact,
Mathematics can be found in plenty of fields today for instance Business Decisions, Physics,
Economics, Engineering, Medicine, Modern Society, Industry, Finance, Marketing and
Computer Science. As we see nowadays, we are in the era of computer and technology, but if
we think deeply for a moment, we will find that Mathematics has played a main and significant
role in the high development of Computer Science. All the latest software and programmes that
made the world very small and provided comfortable life for us has been connected with some
Mathematical programmes.

There are plenty of branches of Mathematics such as Geometry, Topology, Algebra,
Number Theory, Mathematical Analysis including Calculus and Real Analysis, Complex
Variable Analysis, Differential Equations, Numerical Analysis and Functional Analysis etc.
All these branches are relevant and connected with one another. And all of them have their
own effects, significances, and applications in several fields. One of the most crucial and
important branches is the Functional Analysis. Functional Analysis was born in the early years
of the twentieth century as part of a larger trend toward abstraction. One of the characteristics
of functional analysis is the study of classes of functionals in particular, the dual space, the
space of all continuous linear functionals on a vector space (see[1-8]). Functional Analysis is
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one of the central areas of modern mathematics and it has a strong influence on a great number
of completely different fields inside and outside of mathematics such as systems engineering
and atomic physics, or some topics in general Topology, Measure and Integration, Linear
Algebra, Geometry, the theory of approximation or representation theory and theory of
Banach and Hilbert spaces. These spaces have a great impact in the development of Functional
Analysis because the whole theory of Functional Analysis deals with them. Banach space is
known as complete normed linear space while the complete inner product space is called
Hilbert space. The typical examples of Banach spaces are k™and ©"under the following norm:

| ~
|II!-|I = M|E;'!:1|u‘_;|'|
where u = (uy,u,,....,u,) € R* or C*.
and,

Cy(R) = {f € L°(R) : f is bounded and continuous}, ||flle = suprerlf ()|

The typical examples of Hilbert space are as follows:

The space ", finite dimensional complex Euclidean space, is a Hilbert space with an inner
product expressed by:

CU,VE ULV U ULV U, T,

where:
w = (Uy,Usy..,it, ) EC" and v=(v,,v,,..,v,) EC"
The spaceR™with the following an inner product

<u,v>=u.v=uy Hu,v, e tu,v, wherewv ERE

The mathematical concept of a Hilbert space named after David Hilbert who made a very
positive and great influence in the development of Functional analysis. It extends the methods
of vector algebra and calculus from two and three dimensions to finite and infinite number of
dimensions.

The theory of Hilbert spaces is the core around which functional analysis has developed.
Hilbert spaces have a rich geometric structure because they are endowed with an inner product
which allows the introduction of the concept of orthogonality of vectors. Hilbert space is truly
fundamental mathematical structure which appears in wide branches of pure and applied
mathematics. For instance, quantum mechanics, integral equations, linear system of equations
and operator theory.

Also, Hilbert space is an abstract notion of great power and beauty which has been central to
the development of mathematical analysis and forms the backdrop for many applications of
analysis to science and engineering due to the existence of an inner product that determines the
norm.

2. NORMED VECTOR SPACES

2.1 Basics about Linear algebra

In order to achieve our aim of discussing the operators and the application of a Hilbert
space, it is really important to know some concepts, definitions and examples of some related
subjects such as vector space, vector subspace, normed space, Banach space etc. All these
results will provide assistance and guide us to the main point of our research.
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Definition 2.1.1 (Vector Space).A vector space X (called also linear space) is a set of
elements (vectors) over the field F, with two operations:

(i) Amapping (x,y) = x+y fremX X X into X called addition
(ii) Amapping (1,x) — Ax fromF X X into X called multiplication by
scalars, such that the following conditions are satisfied :
x+y=y+x
(x+v)+z=x+(v+2).
alx+y)=ax +ay.
(a+ B)x = ax + fx.
(aP)x = a(Bx).

x+0==x
0x=0.
1x=zx.

wherex,v,zEXanda,fEF
Elements of X will be called vectors If F =R, then X will be called a real vector space,
and if F =, then X will be called a complex vector space.

Definition 2.1.2 (Vector Subspace).A subset W — ¥ of a vector space is a vector subspace
of v if thefollowing two axioms are satisfied:
(i) If v,ware vectorsin W, thensoisv+w

(ii) For any scalar A € R,
if wisany vector in W, then so is hw

Vector subspace is also called linear subspace.

Definition 2.1.3 (Linear Combination).Let E be a vector space and let x,,x,, .......,x, € E.
A vector x € E is called a linear combination of vectors x,,x, ....., x, if there exist scalars
1,0, v e, O, SUCH that

X=Xy T T X,

Definition 2.1.4 (Span).Given a set of vectors § = {v, € V : i € I'} for a vector space V and
indexing set I, the collection of all linear combinations of vectors in 5 is called thespan of S
and denoted by span(S)

It is obvious that span(S) is a subspace of ¥ for any set 5.

Definition 2.1.5 (Linear Independence).

A finite collection of wvectors {x,,x,, ..,x} is called linearly dependent if
ayx, + -+ agx, = 0only if
)y =a, = =a, = 0.

A collection of vectors which is not linearly independent is called linearly dependent.

2.2 Basic concepts and definition
Definition 2.2.1 (Metric Space).Let X be a set. A metric on X is a function:
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d:XxX—RY, (xy)—dxy)

satisfying the following properties:
(M1) d(x,y) 20,andd(x,y) =0if andonlyif x =y
(M2) d(x,y) =d(y,x) forallx,y €X

(M3) d(x,z) <d(x,y)+d(y,z) forallx,y,z€ X (triangleinequality)

A metric space (X,d) is a non-empty set X on which a metric d is given.
Definition 2.2.2 (Norm).Assume X be a vector space over K — (i.e.[R or ©).Anormon X is
amap

I = X — [0,00f, x— |lx|l

Satisfying the following properties:
(82) |lAx|l = 1Alllx|l for everyx € X and A € R
(s1) |ixll =0, and ||x|| = 0 if and only if x =0

($3) llx+yll <lxll +llyll (triangle inequality) V x,y € X

Remark: In case the function ||. || satisfies only the properties (5,) and (S;), Then it is called
a seminorm on
Definition 2.2.3 (Normed Space)A vector space with a norm is called normedspace.

Also we can say that a normedspace is a pair(X, |. 1), where X is a vector space and [l- Il is
a norm defined on X.

2.3 Properties of Normed Spaces

2.3.1 Sequences
Sequence. A Sequence in a normed space X is an ordered set in X whose members can
be labelled with positive integers. We write {u,u,, ...} or {u,}i,.
Convergence of sequences. A sequence {u,} in a subset ¥ of a normed space X
isconvergent if there is a member u € ¥ for which, given any € = 0, a number N can be
found such that

llu, —ull<e foralln>N

If this is the case, we write u,, — u (which is read 'u,, converges to u') and u is called the
limit of the sequence. So, in other way we can express it by

lim ||lu, —ull=0 or limu,=u
n—o n—oo

Which is read ‘the limit as n tends to © of up, 1S U’.
The convergence in a normed space has the basic properties of the convergence in R.
())A convergent sequence has a unique limit

i) If x, = x A, = A (4 A, are scalars), then A,x, — A

(iit) If x, > x and y, >y, thenx,+y, >x+y

Remark. A norm in a vector space E induces a convergence in E. In other words, if we have
a normed space E, then we automatically have a convergence defined in E.

Uniform convergence:Let f, f,. f; ..., € £(A4). We say that the sequence {f, }convergence
uniformly to f if for every e = 0 there exist a constant M such that for all x € 4 and for all
indices n = M we have

If(x) — filx)l <€
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Wheref(A) is the space of all continuous functions defined on a closed bounded set4 — R™.
Pointwise convergence: Let. We say that the sequence {f,} is Pointwise convergence to f
if

fo(t) — f(t) foreveryt€ [a,b]

Where £([0,1]) is the space of all continuous functionsdefined on the interval [0,1].

2.3.2 Completeness

Definition 2.3.2.1.A sequence {u,} in asubset ¥ of anormed space X is called a Cauchy
sequence if

lim |lu, —u,ll=0

M, —+oa
or, in other words, more formally, if for any given e = 0 there exist a number N such that

e, —u,ll < e whenever myn =N

Definition 2.3.2.2.Let X be a normed space and let {x,}, < X be a sequence. Then (x, ) is
said to be bounded if there is a constant ¢ = 0 such that,

lIx,I<c VnenN

Definition 2.3.2.3.A normed space X is called complete if every Cauchy sequence in X
converges to an element of X.

Definition 2.3.2.4.A Branch Space is a normed space which is complete in the metric defined
by its norm; this meant that every Cauchy sequence is required to converge.

Proposition 2.3.2.1. LetX, ¥be normed spaces and letZ — X be a vector subspace. Then, the
space X x Ybecomes with the norm

1
1 Ge )l == (llxll% + NlyllF)2

is a normed space.

Proof. Note that coordinate wise addition/multiplication.

a(x",y)+ Blxy) = (ax'+ fx,ay’ + fy)
MakesX x ¥ a vector space (S;) and (S,) ofa norm are obvious.
For (S3)We consider (x,y)and(x',¥") € X x ¥.Then

G, ) + G690 = Qi+ 5 1 + lly + ' 12

< [lxlly + 1102 + Alylly + IIy'IIy)Z]%

1
= [llellg + 112 1E] + 2l llx llx + 118 + 115 + 211yl lly 1l 2

2
llllg + Iy lI7 + ZJIIXII)Z( +Iyllg \/le 1% + 1y 115+ llx'1 + ly II§]

<

1 , B¢ 27
= [l + Iy 32 + A 1B + 1y 137
=G I+ Iy

Definition 2.3.2.5. Let X be a normed space and let (x,,),, © X be a sequence. Then,

(i) x, convergestox < lim, .|lx, —x|| =0

http://tarbawej.elmergib.edu.ly 716
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o
(ii) Z x, converges if the sequence of partial sums sy
n=1

N
= Z X, converges
n=1

Theorem 2.3.2.1.A closedvectorsubspaceofaBanach spaceisaBanach spaceitself.

Proof.Let (E, ||.||) be a Banach space and let F be a closed vector subspace of E. If {x,} isa
Cauchy sequence in, then it is a Cauchy sequence in E and therefore there exists x € E such
that x, — x. Since F is a closed subset of E, we have x € F. Thus every Cauchy sequence in
F converges to an element of F.

Proposition 2.3.2.2.A Cauchy sequence is bounded.
Proof.Let (x,,),,be a Cauchy,

AN=N; : vnm=N : |x, —x,|| <1. Therefore,

sl < iy — sl + lleyll < 1+ gl vn> N
So, we can find
el < max (s ll 1o oo Wl lw | 4+ 13 < 00 ¥,
Let Let X be a metric space, x € X and r = 0. We callDefinition 2.3.2.6.
B, (x)={v € X:d(x,v) < r} open ball
K.(x)={yv €X:d(x,¥) <r}closed ball
with centre x, radius r = 0.

Proposition 2.3.2.3.Let X,¥ be complete metric spaces (respectively, Banach spaces) and
Z < X be a closed subset (respectively, a closed vector subspace).

(i) X XY is complete metric space ( Banach space)

(ii) Zis a complete metric space ( Banach space)

Theorem 2.3.2.2 (BaireTheorem). Let X be a complete metric space and [D}.)_EN be
]
countably many dense open subsets. Then D := 1,y D,is dense.

2.4 Linear Mappings

Definition 2.4.1 (Linear maps).Let E and F be K- vector spaces. A linear map4 of E into F
isamap 4 : E — F such thatLet X, ¥ be normed spaces and let 4 : X — ¥ be a linear map.
Then the following are equivalent:

(Ax + py) = AA(x) + pA(y) forallx,y € Eand L, u € K
Alinear map A4 : E — K is called a linear functionalor also, a linear form E.
The set of all linear forms on Eis called the algebraic dual E of E.

E" becomes a K - vector space with the following definitions of addition and scalar
multiplication:

y+z:x—y)+zx), ly:x—Ay(x); yz€E", AEK x€EE

The zero map 0 : ¥ — ¥ mapping every elementx € X to0 € Y.

http://tarbawej.elmergib.edu.ly 717
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Proposition 2.4.1.

(i)A linear map 4 : X — Y is called injectiveif for all x,,x, € X, the condition Ax, = Ax,
implies that x; = x,. In other words, different vectors in X are mapped to different vectors in
Y.
(ii) A linear map 4 : X — ¥ is called surjectiveif the range of A = ¥.
(iii) A linear map is called bijective if Ais injective and surjective.
Definition 2.4.2 (continuous mappings). Let E, and E, be two normed spaces, and let L
be a mapping from E, into E,. If for any sequence {x,} of elements of E, converges to
x, € E, , the sequence {L(x, )} converges to L(x,), the mapping L is called continuousat x,
i.e., L is continuous at x, if

lxw = %ol =0 implies L) = LGl — 0

orx, —x, in E; implies Lx, — Lxy in E,

If L iscontinuous at every x € E,, then we simply say that L is continuous.
We can also define the continuous mapping on a normed space by saying that:
Let E be anormed space. Amap A4 : E — E is said to be continuousif for € = 0, there exist
d = 0 such that

llx—yll <& implies JA(x) — AWl <e forallx,y€E

Theorem 2.4.1. A linear mapping L : E — F is a continuous if and only if it is continuous at
a point.

Proof. Assume L is continuous at x, € E. Let x be arbitrary element of E and let {x,} be a
sequence convergent to x. Then the sequence {x, — x + x,} converges to x, and thus we
have

L Ce) = LGN = NIL G — x + x0) = LCxo)ll — 0

Definition 2.4.3 (Bounded linear mapping).
A linear mapping L : E — F is said to be bounded if there is a number € such that

NL() < Cllx|l forallx€E

Proposition 2.4.2. Let X, ¥ be normed spaces and let 4 : ¥ — ¥ be a linear map. Then the
following are equivalent:

a) A is continuous.
b) A is bounded. That is,

B || Auel|
C o= S”ﬂpuExu:D |IIL|I
A, Il
Where ¢ = sup,., I J”J
u

w € X isthe normof the linear map A
Proof. b) = a) If ¢ < oo, we get
|Auw, —Aull = [[A(w —u )l < c. lle—u,ll

thus, u, — u implies Au, — Au.
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a) = b) Assume A were unbounded : ¢ = oo. Then

VneEN Ju, €X :  [Au,ll > n.llu,ll.

Set v, and observe that

p— un
" gl

fluall 1
I ll = == ==—0.
nllu,ll  n

Un
nflu |l

A nllu
L 71
nlun|l nlju, |l

Thus v, — 0 and ||Av,|| = HA

i.e. Av, » A0 =0.

Definition 2.4.4. A mapping A from a subset E of a normed space F into F(A: F — F)is
called a contracting mapping(or simply acontraction) if there exist a positive number c< 1
such that

lAu — Aw|| < c|lu — w]] for every u,w € E

Theorem 2.4.2. (Banach Fixed Point / Contraction Mapping Principle).
Let X be any complete metric space (Banach space) let F — X be a closed subset and
A : F — F be a contraction, i.e., a map satisfying

l[Au — Aw|| < cllu —w|| VYu,w€eF

Where c is a constant belonging to the unit open interval (0,1). Then, there is a unique fixed
point f € F, i.e., apoint with Af = f.
Proof the uniqueness.Assume that f, g are two fixed points with f # g. Then
As f = Af and g = Ag from the uniqueness =
0 < IIf - gll = llAf - Agll
<cllf —gll <If —gll contradiction!since ||f — gll can not be less

than ||f — glI

= lf-gl=0 =f=g
So, there is just one unique fixed point.
Proof the existence.Write A"u for Ao Ao Ao ... ... 0 A and A°u = u.

We want to prove that (A"u), is Cauchy

One we get this; we conclude thatf := lim A® uexists (by completeness)and it is a fixed point.
Indeed. ’
Af =4 (liinA"u) = lim A" w) = lim A" u = f
Now, to prove the sequence (A™u),, is really Cauchy: take n, k € M. Then
[[AMu — AMHey|| = ||A"u — A" AFul|
< clu - Ak
< c(lu — Aull + ||Au — A%ul| + -+ ... ... + || u — Aku|]) triangle inequality
< ™ (Jlu— Aull + cllu — Aull + c?|lu — Aul| + .. +c*Hu — Aul)

=c"(L+c+c?+ 4k lu—Aull
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ScA"(A+c+c?+o k) lu— Aull

Cﬂ.
—A
Tl - aul

Where we used the triangle inequality in the third line, the contraction property in the line 4,
and the geometric series in the last line.

Proposition 2.4.2. The function

. [l Au|l
AN == subyex, ., Tall = SUPweXju-1 lAwl|

isanormon L(X, V).

where £(X,Y) is the space of all continuous linear maps from X to Y:
L(X,Y)={A:X —>Y: Alinear,continuous}.

Theorem 2.4.3(Open Mapping Theorem).

Let X, Y be Branch spaces, and let A : X — ¥ be a bounded, surjective linear map. Then A
maps open sets in X to open setsin'Y.

Theorem 2.4.4(Inverse Mapping Theorem).

If A is a bounded linear bijection from a Branch space X to Branch space Y, then the inverse
of A is continuous (and hence bounded).

Theorem 2.4.5(Closed Graph Theorem).

Let A : X — Y be a linear map between Branch spaces X and Y. Then the graph A is closed if
and only if A is bounded.

Givenamap 4 : X — ¥, then the graph of A is the set.

GA)={(xy)EXXY : y=Ax}.

Note that if X and ¥ are normed linear spaces, and 4 is linear, then G(4) is a linear subspace
of X x ¥, with norm |Ix:F||g|:A} = |Ix||;|, + |Iv"1«'

Proof. Suppose first that A is bounded, and let{(x,,4x,)}be a sequence in G(A) with limit
(x,v) € X x ¥. Since A is bounded, then

[1AGe, =0, < Allllx, — xllx — 0, and so Ax, — Ax.

We also have

[1Cen, Axn) = Ce, M llxxy — 0
< lx, —xlly + 1A%, —ylly — 0

= Ax, —y.

Uniqueness of limits then implies that v = 4x, and so (x, y) € G(A4). Therefore G(4) is
closed.

Now suppose that G(4) is closed. Then it is closed linear subspace of X x ¥, and in particular
it is a Banach space.

We have two projection maps

http://tarbawej.elmergib.edu.ly 720
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P :G(A) — X P,:G(A) —>Y

(x.Ax) — x (x,Ax) — Ax

The following estimates show that P, and P, are bounded.

1P (x, Ax)ly = llxllx < llxllx + NlAx]ly = [1Cx, A lga

1P, (x, Ay = I|Axlly < llxllx + [lAxlly = ICx, A0 lga)

Since P, is a bounded linear projection, then P * is bounded by Theorem 6 (Inverse Mapping
Theorem) (note that this uses the Open Mapping Theorem, and hence the Baire Category
Theorem). Therefore A = P, o P;* is bounded, which is complete the proof.

3. HILBERT SPACES
3.1 Some definitions and overview about Hilbert Spaces

In order to get some results that could provide help for the next sections, we need to define
some spaces such as Inner Product Space and Hilbert Space and discuss some relations
between Inner Product and Normed Space with some properties of Hilbert space. This section
will be devoted for defining the required spaces.

Definition 3.1.1. Let H be a vector space over the field C (K or E). A function
(x,v) = < x,v = fromH x H into R resp Cis called an inner product on H if for all
x,v,z € Hand forall € K or T, we have

(a) <=x,x>=0,and <x,x>=0
if and enlyif x=10
(b) <=x+vzz=<xz>+ <y,z=
(c) <ix,y==A<x,yv>
(d) <x,y>=<yx=>
Aninner productis also called a scalar product.

Definition 3.1.2. A vector space equipped with a given inner product
x|l = < x,x =, ¥ x € H iscalled an inner product space (also called apre-Hilbert space).

The pair (H, < .,.>) is called the inner product space.

Proposition 3.1.1. From the definition of inner product space, we obtained some results as
following,

(i) <=xAv==A<x,yv>

<xAy>= <Ay x>=A<yx>

=,I:‘:}r,x::==i=:ix,}r}
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(i) =Ax+d,yz==

A <xz>+A, <y z>

<A xtAyzz=<zix+ Ay>

= H,=.,=::z,x:=+ fﬂ:z,y::
= A, <xz>t+A,<yz>=
Proposition 3.1.2. Let X be a pre- Hilbert space, E = K, and x,y € X. Then
(@) llx+wl* + llx = ylI* = 2llx* + 2[l¥ll?

(Parallelagram law)
1 . 1 i
(ii) =x,y== lex + yll* — ;llx —l°

(Polarisation identity)
(iii) <x,y==0 = |lx+ylI* = lIx|I* + lI¥ll?
(Pythagoras)

Theorem 3.1.1.The inner product (x,¥) — < x,y = from the product normed spaceH x H
into K or T is continuous.

Proof. Suppose x,, — a and y,, — b in H. Then we have
|<x,v,>—<ab=|=
l<x,v,>—<x,b>+<x,b>—-<ab>=|
=|<x,v,—b>—<x,—a,b>=|
< |<x,v,—b>=|-|l<x,—ab=>|
< llx, My, — Bl + 1B, — all

When x,, — a then ||x, —all = 0 as n — w

since y, — b Moreover, ||y, —bll —0 as n — @

Now, as I, lllly, = Il + lIBll[lx, —all — 0
= |<x,y,>—<ab>—0

And then, < x_,v, >—<a,b =
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Definition 3.1.3. A Hilbert Space is a complete E or C - vector space equipped with a scalar
(or inner) product.

From the definition we notice that a pre-Hilbert Spacewhich is complete under the norm
llz|l = /< x,x = is called a Hilbert Space.

3.2 Relation between norms and scalar product

All inner product spacesare also normed vector spaces. Given a scalar product
x|l :=y<=x,x>= ¥xe€H isanorm.

Conversely, a scalar product comes from a norm only if the norm satisfies the parallelogram
law.

Theorem 3.2.1.Every inner product space H is a normed space under the norm

Proof.

(S5, )does hold, since /< x,x = = 0 when ||x|| = 0. Also, the other way around is correct.
(S5, ) does also hold, since
=A1 < x,x > = |A]%|x||?

= ||lAx|l = |Alllx]l] ¥xeH A€ Rork
(S;) Inorder to show the triangle inequality holds we consider
Ix+yl*=<x+yx+y=>=
TXXFT<LyEt+Syx =4Sy, v =
=<xx> 42Re <x,v> + <y, y =
<<xx> +2|l<xy=l+<sy vy
< llxl® + 20Nyl + xvll? = (llxll + llyll)* =
I + ¥l < llxll +ll¥ll. ¥x,y€H

Then the triangle inequality holds and complete the proof.
3.3 Relation between Hilbert space and Banach space
A Hilbert space is a Branch space with norm given by an inner (scalar) product

lxll = /< x,x > (*)

For example, (L* (), 11-11,) where
lxll, = ([l du)-=.

So, we showed that Every Hilbert space is a Banach space.

But the question that should be asking now, Is it the converse true also?

In other words, is Every Banach space also Hilbert space?

The answer is that it is a necessary and sufficient for a Banach space to be Hilbert is for the
norm stated above (*) should satisfy the parallelogram law.

3.4. Elementary Properties of Hilbert space

There are many inequalities and identities in Hilbert spaces those can provide some useful
information to the operator theory in Hilbert spaces such as the Parallelogram identity,
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Polarization identity, Cauchy Schwarz inequality, The Pythagorean identity, etc. The
parallelogram law plays a fundamental role in higher mathematics. As we just discussed in
previous section the relation between Hilbert space and Banach, and we said that the essential
condition for a Banach space to be Hilbert is achieving the parallelogram law.

3.4.1 Parallelogram Law

The definition of Parallelogram law can be defined as follows:
For any two elements x and y of an inner product space H (Pre-Hilbert space) we have

e + vII* + llx — vlI* = 2(llxl* + ll¥]1*)
Proof. |lx + v[I* + [lx — ¥l|* =

<xty,x+y> + <x—yx—-y=>
= <xx>+ <xny>+ <yx>=+ <yy>
+ <xx> —<x,y> —<yx>=+ <y,y>
= 2=<x,x> + 2 <y v=
As <x,x > = ||x||Pand < v,y == |ly||* thus,
llx + 1% + llx — yII* = 2[lxlI* + 2yl
= 2(llxIl* + llvlI?)

3.4.2 Polarization Identity

Let x, v € V be an innerproduct space. If V' is a vector space over & then
4<x,y>= lx+yll*- llx—vl?

If 7 is a vector space over T then

4<xy>= |lx+yl*— llx—yl?
—i(llx+ iyll* = llx — iyll*)
Proof. For a real vector space,
lx+ylI* = llx —ylI* =
<xXx+yV,xt+y E—<x—V,x—vyv:>
= <rxFt+=<xryrt+<yrx=+<yy=
—(fxx>=—<x,y>—<yx>=+<yv =)
=2<x,y>=+2<yx>=
=2 <x,y>r+2<xy=
=4 < x, v =
For a complex vector space, note that by the same calculation as above.
lx+ vyl —llx—yll*=2<xy>42<yx >
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And, [|lx + iyll® = llx —iyll* =
2 x,ivE> 2 <iy,x =

LHS= 2<x,y>+2<y,x >+

di<x,iy>1+2i<iyx>
LHS= 2<x,y=+2<v,x =+
di<x,iy>t+2i<iy,x>
=2<xy>+2<yx>=+
2(—i)? <x,y>+2i*<yx>
2<x,y =212 <y, x>+

2 x, vy —2<y,x=
=4 x,yv=
3.4.3 Pythagorean Identity

Let x,v € H, where His a pre-Hilbert space, then
<xy>=0= |x+yl* = =l +¥l*

Proof. llx + viF=<x+yx+y=>
=<xx>r+<n,yErTr<yvx= 1<y yvE
As <x,y>=0 sois <V, X> Then
lx+vll*P=<xx>=+<y,v>
= [lxlI* + [l¥ll?
3.4.4 Cauchy-Schwarz Inequality
Let Hbe a pre-Hilbert space. Then for all x, v € H, we have

Assume vy # 0. Then < y,y = # 0.

=X, V=
Leti=———VAEL
<yy>

Then we have
0= lx—Ay|lP=<x—Av,x — Ay =

={x,x}—ﬂ_,{x,}r:=—
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A<y, x>+il<y,y>

ZxyE=<yx>

=< X,x > —
<yy=

Therefore, we have

l<x,y=*=<x,y><vx >

|< x,y =|*
=0<<xxy>———
e L
|<x,v =
— T € <xx>
<y, y=

= l<xy>*< <x,x><y,y>
= llxll*llyll?
By taking the square root for both sides, we get
l<x,y =l < lxllllyll
3.4.5 Minkowski inequality
Let H be a pre-Hilbert spaceand , y€ H. Then we have
lx + Il < [lxll + Iyl
Proof. lx + ¥l =<x+yx+y=>
= <xx>4+<x,v>4+<yx =+<y, v > (1)
= [lxlI*+<x,y = +< y,x = +lyl*
Now, from the Cauchy-Schwarz inequality just stated above.We have
l<xy =< llxllyll
Then we can say that
<xy =< [Ixlllyll
Now we apply these results in our main equation (1). We get
e + ylI* < llxll® + 20l Tyl + yll* = Cllxll + lyl)?

= [lx+yll < llxll + llyvll

http://tarbawej.elmergib.edu.ly 726



So—idldl >
/\ Journal of Educational 1.5 aual il Jalas
n ISSN: 2011- 421X 19 sl
+ Arcif Q3

3.4.6 Appolonius identity
Let x,y,z be three elements in a pre-Hilbert space called H.Then we have

lz— x|+ lz—¥lI* =
1 1
5 | — ylI® +§ 12z — (x + ¥)II*

Proof. lz—xlI* + llz—¥lI* =
CLEI—XI—XF+CI—V,I—V>=
= L zrx—<Dx > —<xz>+<xx>
+<5z>—<zy> —<=<yz=T1+=<yyV>=
=2lzIP + llxl* + llyll*~ <z,x =
—<xz>—<zy=—<yz> — (*)
lx — ¥l + 122 — (x + ¥)II° =
<x—v,x—vyv>+=2z—(x+vy).2z—(x+v) >
=<y x>—<xy>E—<yx>+<yy>
+<=<2z,2z>—<2z,x+v >
—<xt+yvidz=>=+<xt+yvxit+y>=
==l +llyllF+l2zIP -2 <zx+y >
—2=<xtyz=—<xyv>=-—<yx>
+<x+yvxty>=
=zl + llyllP+ 2zl -2 < z,x =
—2<zyr—2<x,z>x-—-2<yzI=
— =<y E—<=<yvx>=1+<xx>
+t<x,y>+<yx>=+<yy>=
= llxll* + llyll*+ l12zIP -2 < z,x >

—2<z,yv>—-2<xz=>
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—2< y,z> +lxl* + [IylI®
=2llxlI* + 2llylI* + 4llzlP -2 < z,x =
—2<z,y> 2<xz>—-2<yz>

therefore,we apply the results now

1 S ,
—llx=ylI"+=-12z— (x+ ¥)II" =
S e =yl= 4+l (x + wli

1 5 5
5 (llx—vllI*+ lI2z— (x + v)II7)
= [lxlI® + ll¥ll* + 2llzlP—<z,x =
—<zZy>—<xz>—<yz> —(=x)
Now from (*),(**) we conclude that,

lz—xlI*+llz— ylI* =
1 . 1 "
—llx—ylI"+=12z— (x + ¥)II
2|| yll 2" (x+ »l
so, the prove is done and the inequality holds.

Definition 3.4.1. Let ¥ be an inner product space (pre- Hilbert space).

(i) Afamily s of non-zero vectors in V' is called an orthogonal sequence if x L yfor any two
distinct elementsof § = < x,v ==0.

(ii) A collection of vectors (x,) .., SV is said to be orthogonal sequence if < x_,xz = =0
foralla = g andif <x_,xp >=1foralla =p.

Theorem 3.4.1.Let x,,x,, ......, x,, are orthogonal vectors in an inner productspace, then

: = illxkllj- (+)

Proof. *¥1 L %a: then ||z, + 2,112 = |lx,I1? + [|x,I* by identity (3.4.4). Thus, the theorem is
true forn = 2. Assume now that the (= }holds forn — 1, that is

n

Y,

=1

n—1

S,

=1

n—1

- lex,{llf.
=1

http://tarbawej.elmergib.edu.ly 728



Ss— il A=

Journal of Educational 1.5 aual il Jalas
ISSN: 2011- 421X 19 s
Arcif Q3

n—1

Set x =Zxk and y=x,.
=1

Clearly x L v. Thus

n

Y,

=1

= llx + ylI* = llxlI* + llylI?

n—1

mn
= Z e 2 £ 11, 12 =) Nlx, I
=1 =1

This theorem is called Pythagorean Formula.

Theorem 3.4.2 (Orthonormalization Process). Let {x,} be a sequence, finite or infinite, of
linearly independent vectors in an inner product space H. Then there is an orthonormal
sequence {e,} in Hsuch that for each k, both {x,,x,......., x.} and {e,e,, ... ....e, }generate
the same vector subspace of H.

Proof.Let &(z,z,,....2,) denote the vector subspace spanned by the vectors
24,25, .., 2 EH and  let elzﬁ.Suppose €,,€5, ... ..., &, have been constructed by

induction.

Let @pyy = Xpyq — Zk=1 < Xpsi,€; = ;. SUppose to the contrary that a,,, = 0. Then
Xpey E Gleg, eq, . ... .,e!{] = G(xl,x:,._.. ._.,xkj gives the linear  dependence  of
XX gy e ey Xy X WHicCh is a contradiction.

Hence, a,.., = 0. Define e, ., = =2 clearly, |le,., |l = 1.

E+1
gyl
Alsofor1 <= p < k,we have < ey.,,e, ==

ZJ{
=1

k
T Xpe €y = —Z - T Xpy1s €5 5}';: =
:|_

Thus, e,,e,, ... ..., &y, €44, are orthogonal.
Now the following calculation completes the proof.

Glej.es e €rsy) = G[Gley, e, o 8 ) €02y ]
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k
=G [G(el, s €3 ), X2y —Z < Xy, € 8
==1

- G[G (El’ e:r "'.I'Ek:]’xk'l'l]
= G [G (.’1’1,-'1':; "'J'xk:]’xk'l'l]
=G (xl,xg, ---:xerk+1)'

Lemma 3.4.1. let {x,}5_, be an orthonormal system in an inner product space V" and let
{a,}¥_, be afinite sequence of scalars. Then for allx € V, we have

I_Zﬂ”x”
Zl*-‘:x,x =|? +Z|ﬂ” < x,x, >|*

n=1

-

= |lxI?

Proposition 3.4.1 (Bessel's Equality and Inequality).Let (e,);.,,= X be an orthonormal
sequence in the pre-Hilbert space X.Then, for every x € X we have

mn

x—z <X, e > e

i=1

1x[12 ZHH S2 (1)

Z'“ e, >P< x> (2)

Proof.In view of the Pythagorean identity (3.4.3), we have

leﬂ‘:x,ei >e = Zlﬂ‘:x,ei P2
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n

ﬂx—zﬂ’:xe}e x — Z:’:xe =g =

i=1

==:x,x:=—=‘:x,z=‘:x,ei}ei:=

i=1
mn

—= Z <X, e >e,x>

i=1
n n

—|—=‘:Z ﬂx,e}-::e}-,z <x,€>g >

=1 i=1

i
n n
-I-ZZ <xe><xe ><e,e >

i=1i=1
Now, since is orthonormal Then,

0 < |Ix|I? —EZI{:(E |2 +Z|=‘:xe S[2(3)

= N2 zh:x e >

i=1

= equality (1) holds. Thus, from (3)

ZI:‘: x,e; =|* < ||x]|?
i=1

zlc‘: x,e;. > asn— w

i=1
Which is complete the prove and the inequality (2) holds.
Theorem 3.4.3 (Riesz-Fischer). Let (x,),., be an ON-sequence (Orthonormal) in the
Hilbert spaceX. Then,

==

L=
E €, X, CONverges < E le, |= < co.

n=1 n=1

If this holds then we have

Sk
n=

First of all, we need to show that Xt _, ¢, x,is a Cauchy sequence.

i'! mn
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Let’s assume that 4, = X! _, ¢, x, for the partial sum.
Now,by Pythagoras we get v j < i the followmg

|| 4. —A|| = <A —A A -4 >

= E €, Xy, E €y =

:'z—_;l+l k=j+1

= Z Z c”ck:‘:x”,ck =

n=j+lk=j+1

= E l:':'! x n

n=j+1

L

n=j+1
This shows

{A.} is Cauchy & _lim Zlc” =0

J_, —3m_,]:f.k

j+l
= Z|c}-
1

T oo,

But as X is complete,

= {A,} converges.
Now, by the continuity of the normas ||. |[we mentioned early in proposition ... we get

[=a)

E C?Ex?!

n=1

= lim||4,;|I*
L

i oo
= hmzz |c:lz|: = Zlculj

n=1 n=1

Theorem 3.4.4. Let{x, }_,be an orthonormal system in a Hilbertspace H. Then the following
are equivalent.

(1) {x,} is complete.
(2) fcrr all x EH,

x—z <X, X, =X,

n=1

(3) lxll?= Zh: xx, >
n="1
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(Parseval identity)
(4) for all x,y € H,we have,

Proof. Let x € H. By Bessel’s Equality (1_) proposition 3.4.1. For every n € N, we have

mn

x—z <X, 8 =g

i=

1
n

= lxlI? —ZIﬁ:x,ei >2 (%)
=1
Let {xu }:lz = {ei}i

k

x — E LXK, X,

n=1

'y
= ||x||f—Z|-::x,xu L

n=1

If {x,,} is complete,then the expression on the left in (*) converges to 0 ask — co.

Hence,
k
lim [uxuf —Z < x,x, :,~.~|f] —0
n=1

Therefore (3) (Parseval identity) holds.

(3]

=

4. CONCLUSION:

In this paper we have introduced the Hilbert spaces along with their properties, operations,
and applications. Specifically, we have focused on significant and crucial spaces for Hilbert
spaces called Banach Spaces. We have also studiedthe normed spaces and their properties.
Finally, we discussed what is meant by Hilbert spaces and what is the relation between
Hilbert and Banach spaces. In Future, we are planning to extend this work by exploring the
orthogonal complement, projection and Rieszrepresentation Theorem.
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