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Fibrewise Separation axioms in Fibrewise Topological Group

N. S. Abdanabi

Department of Mathematics Faculty of Science, Al Asmarya Islamic University, Libya
nsalem1962008@yahoo.com

Abstract: In this paper we will introduce and study the notion of fibrewise separation axioms
in fibrewise topological group and show that fibrewise T, space = fibrewise T,space =
fibrewise T, space.

1. Introduction

The fibrewise viewpoint is standard in the theory of fibre bundles, however, it has been
recognized relatively recently that the same viewpoint is also of as important in other areas
such as general topology. A fibrewise topological space over B is just a topological space X
together with a continuous function p: X — B called projection. Most of the results obtained so
far in this field can be found in James [4] (1984) and James [5] (1989). Our aim in this paper is
to study the fibrewise separation axioms in fibrewise topological group. We study many
properties and obtained some new results. Also we investigate some important theorems and
properties of fibrewise separation axioms in fibrewise topological groups , especially for the
fibre G, over the identity element eg of B .

2. Preliminaries

Throughout this section we give the basic concepts and notations which we shall use in this
paper:

2.1. Fibrewise topological space [5]

Definition 2.1.1: Let B be any set. Then a fibrewise set over B consists of a set X together with
a function p: X — B, called the projection, where B is called a base set.

For each b € B, the fibre over b is the subset X, = p~1(b) of X. Also for each subset W
of B, we regard Xyy = p~1(W) is a fibrewise set over W with the projection determined by p.

Proposition 2.1.2: Let X be a fibrewise set over B, with projection p. Then Y is fibrewise set
over B with projection pa for each set Y and functiona : Y — X.
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In particular X" is a fibrewise set over B with projection P/X’ for each subset X’ of X. Also
X is fibrewise set over B’ with projection p for each superset B’ of B and function 3 : B —» B'.

Definition 2.1.3: If X and Y are fibrewise sets over B, with projections p and q respectively, a
function ¢ : X — Y is said to be fibrewise function if g = p , in other words @(X;) € Y3, for
each b € B.

Definition 2.1.4: Let { X,} be an index family of fibrewise sets over B. Then the fibrewise
product []g X, is defined, as a fibrewise set over B, and comes equipped with the family of
fibrewise projections m,: [z X, = X,. Specifically the fibrewise product is defined as the
subset of the ordinary product [] X,, in which the fibres are the products of the corresponding
fibres of the factors X,.

Definition 2.1.5: Let B be a topological space. Then a fibrewise topology on a fibrewise set X
over B is any topology on X for which the projection p is continuous.

A fibrewise topological space over the space B is defined to be a fibrewise set over B with
fibrewise topology.

The coarsest fibrewise topology on a fibrewise set X over B is the topology induced by p,
in which the open sets of X are precisely the inverse images of the open sets of the B, this is
called the fibrewise indiscrete topology, and the discrete topology on a fibrewise set X over B is
called fibrewise discrete.

Definition 2.1.6 : The fibrewise topological space X over B is called fibrewise closed
(fibrewise open) if the projection p is closed (open).

Definition 2.1.7: Let X be a fibrewise topological space over B. If x € X,;,, where b € B ,then
the family r of neighborhoods of
x € X is fibrewise basic if for each neighborhood U of x, there exists a neighborhood W of b in
B such that X,V < U, fo some member V of T..

Definition 2.1.8: Let X be a fibrewise topological space over B. Then:

L. X is fibrewise T,y(T;) if whenever x,y € X,;,, where beB, and x # y , either there exist
a neighborhood of x which does not contain y, or there exists a neighborhood of y which does
not contain x (there exists a neighborhood of x which does not contain y and there exists a
neighborhood of y which does not contain x).

1. X is fibrewise Hausdorff( T,) if whenever x,y € X;,, where be B, and x # y, there
exists disjoint neighborhoods V, Uof x,y , respectively, in X.
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1l. X is fibrewise R, if for each point x € X,,, where be B, and each neighborhood Vof x
in X, there exists a neighborhood W of b in B such that Xy, N {x} c V.
v. X is fibrewise functionally Hausdorff if whenever x,y € Xy, where beB, and x #y,

there exists a neighborhood W of b in B and a continuous function a : Xyy — I such that
ax) =0and a(y) = 1.

V. X is fibrewise regular if for each point x € X;,, where be B, and each neighborhood
Vof x in X, there exists neighborhood W of b in B and a neighborhood U of x in Xy such that
Xw N U € V. A fibrewise regular and fibrewise T, is called fibrewise Ts;.

Vi X is fibrewise completely regular if for each x € X,,, where be B, and for each
neighborhood Vof x in X, there exists neighborhood W of b in B and a continuous function
a: Xy — I'such that a(x) = 1 and a(x) = 0 for all x away fromV.

Vil X is fibrewise normal if for each point b of B and for each pair H, K of disjoint closed
sets of X, there exists a neighborhood W of b in B and a pair U,V of disjoint neighborhoods of
XwNH, XwNKin Xy .

vil. X is fibrewise functionally normal if for each point b of B and for each pair H,K of
disjoint closed sets of X, there exists a neighborhood W of b in B and a continuous function
a : Xy — I'such that @ = 0 throughout Hyy, and a = 1 throughout K.

2.2. Topological group, Fibrewise Group and fibrewise topological group

Definition 2.2.1[3]: A topological group G is a group which is also a topological space on G
such that the maps g — g~* and (g, h) — gh are continuous.

Theorem 2.2.2[3]: A group G endowed with any topology, is a topological group if and only if,
the mapping (g, h) —» gh™! is continuous.

Theorem 2.2.3[3]: Let a be a fixed element of a topological group G, then r, : g — ga and
I, : g — ag of G onto G are homeomorphisms of G.

Corollary 2.2.4[3]: Let F be a closed set, E be an open set, A be any subset of a topological
group G and a € G. Then aF, Fa, F~1 are closed sets, aE, Ea, E™, AE, EA are all open sets.

Proposition2.2.5[3]: For each neighborhood U of the identity e in a topological group G there
exists a symmetric neighborhood V of e such that VV c U.

Corollary 2.2.6[3]: Let U be any neighborhood of the identity e in a topological group G. Then
there is a neighborhood V of e such that V < U. And this is true at each g € G.
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Theorem 2.2.7[3]: Let G be a topological group, let e denoted the identity in G, and let F be a
closed subset of G such thate ¢ F. Then there is a continuous function f: G — [0,1] such that
f(e) = 0 and f(x) = 1 foreveryx € F.

Definition 2.2.8[10]: Let B be a group. A fibrewise group over B is a fibrewise set G with any
binary operation makes G a group such that the projection p : G = B is homomorphism.

Definition 2.2.9[10]: Let G be a fibrewise group over B. Then any subgroup H of G is a
fibrewise group over B with projection p,;4: H » B, we call this group a fibrewise subgroup of
G over B.

Definition2.2.10[10]: Let G and K be two fibrewise groups over B. Then any homomorphism
@ : G = Kis called a fibrewise homomorphism if ¢ is a fibrewise map.

Definition2.2.11[10]: A bijective fibrewise homomorphism is called a fibrewise isomorphism.

Theorem?2.2.12[10]: Let G be a fibrewise group over B with projection p and H be a fibrewise
normal subgroup of G. Then G/H is fibrewise group over B, with projection q : G/H — B such
thatqm=p.

Theorem?2.2.13[10]: let ¢ : G — K be a fibrewise function, where G and K are fibrewise groups
over B, with p, q respectively. Then:

1. If q is injective then ¢ is a fibrewise homomorphism, and consequently:
i.) @(eg) = ek, where eg, ex denotes the identities of G, K respective.
i) @(ker(P)) = ek.
iii) If H is fibrewise subgroup of G, then ¢@(H) is fibrewise
subgroup of K.
iv) If H' is fibrewise subgroup of K, then ¢ ~1(H") is fibrewise subgroup of G.
v) If H is fibrewise normal subgroup of G, then ¢ (H) is fibrewise normal subgroup of K.

2. If p is bijective and q is injective then if G is abelian then K is abelian.
3. If g is bijective and p is surjective then if G is cyclic then K is cyclic.
4. If p, q are bijective then ¢ is fibrewise isomorphism.

Definition 2.2.14[11]: A fibrewise topological group G is a fibrewise group endowed with
fibrewise topology such that the mapping g — g~ of G onto G and (g,h) — gh of G X G onto
G are fibrewise continuous maps.

Proposition 2.2.15[11]: Let G be a fibrewise topological group over B. Then Gg- is fibrewise
topological group over B*for each subgroup B*of B.
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Proposition2.2.16[11]: Let G be a fibrewise topological group over B with projection p and H
be a fibrewise normal subgroup of G. Then the quotient group G/H is a fibrewise topological
group with projection q: G/H — B such that qm = p.

3. Fibrewise Separation Axioms

In fibrewise topology X, if X is fibrewise T, then X is fibrewise T, but the converse does
not hold in general, however If G is a fibrewise topological group we will prove in this section,
that the converse is true.

Theorem  3.1:  Let G be a fibrewise topological group over B.
G is fibrewise Hausdorff  (fibrewise T;, fibrewise Ty) if and only if G., is Hausdorff (
fibrewise Ty, fibrewise T).

Proof:
Frist, if G is fibrewise Hausdorff then from the definition the fibre G, is Hausdorff

Second, let beB and x,y €EG, : x#y > xy l#yy l=¢;and x,y €G, = pX) =
P =b =p(PE) " =es =pEply ) =eg=>pky ) =eg = xy ' €Ge, but
eg € Ge, andxy™* # eg. Since G, is Hausdorff then there exist open sets U, V such that
xy 'eU,egeVand UNnV=0g.now xy ! €U=x€Uyandy € Vy, where Uy, Vy open
sets and to show that Uy n Vy = @, suppose Uy N Vy # @, this is implies there exist an
elementa € (UynVy) = 3r; € U,r, e Vsuchthata=r;y =r,y=>r; =1, thenr; eUNV
butUnNV =@ and this is a contradiction, hence Uy Nn Vy = @,, thus G is fibrewise Hausdorff.
Similarly, we can prove the case of fibrewise T; and fibrewise T.

The following results prove the converse : "If a fibrewise topological group is fibrewise
T, then it is fibrewise T," (If a fibrewise topological group is fibrewise T, then it is
fibrewise T, )

Proposition 3.3: Let G be a fibrewise topological group over B. If G is fibrewise T, then G is
fibrewise T;.

Proof:

Let G be a fibrewise T, and for be B let x,y € Gp, x #y then xy™' # eg and xy™" € Ge,
but e € G, since G is fibrewise T,, then there exist open set U of G contains egand does not
contain xy~! from Proposition 2.2.5 = exist open symmetric neighborhood V of e; such that
VV c U, then Vx is open and contains x but does not contain y, and Vy is open and contain y
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but does not contain x. Where if y €Vx then exist v; €V suchthaty =v;x = xy 1 =v, 1 €
V~1 =V c U. This is contradiction.

And, if xeVy then exist v, €V such that x=v,y = xy ! =v, €VCU. This is
contradiction. Then G is fibrewise T;.

Proposition 3.4 : Let G be a fibrewise topological group over B. If G is fibrewise T; then G is
fibrewise T,.

Proof:

Let G be a fibrewise T, and any be B let x,y € Gp:x # y then xy™* # eg and xy ™' € G,
but e € G since G is fibrewise Ty, then there exist open set U of G contains egand does not
contain xy~! from Proposition 2.2.5 = exist open symmetric neighborhood V of e such that
VV c U, then Vx, Vy are open sets contains x and y respectively and Vx n Vy = @. Where if
Vx N Vy # @ then there exist an element re (Vx N Vy) and there exist two elements v,, v, in V
such that r=v,;x = v,y hence xy ! = v, v, e V"IV =VV < U. This is a contradiction,
then G is fibrewise T,.

Proposition 3.5: Let G and K be fibrewise topological groups over B. Let @:G — K be a
continuous fibrewise homomorphism and let the kernel( ¢@) ={ eg}. Then if K is
fibrewise T, (fibrewise Ty, fibrewise T,) then G is so.

Proof:

Let K be a fibrewise T, and any be B let x,y € Gp:x # y then xy™! # e and @(xy™1) # ey
this is implies @X)@(y™1) # ey, hence @(x) # @(y), since K is fibrewise T, and
©(x), (y) € K then there exist a neighborhood V of ¢(x) in K which does not contain ¢(y)
or vice versa, then ¢~1(V) is neighborhood of x in G which does not contain y. The proof is
similar for the cases if fibrewise T;and fibrewise T,.

Proposition 3.6 : Let G be a fibrewise Hausdorff over B. Then Gg is fibrewise Hausdorff
over B’ for each subgroup B’ of B.

Proof:

Let B’ be any subgroup of B and any b’ € B’ let,,y € G,y : x #y sinceb’ € B Band G is
fibrewise Hausdorff then there exist disjoint neighborhoods U, V of x,y in G. let U' =Un
Gy,

V' =V NGy, then U’, V' are disjoint neighborhoods of x, y in Gg/ this is implies Ggr is
fibrewise Hausdorff.
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Theorem 3.7 : Any fibrewise topological group is fibrewise regular.
Proof:

Let G be a fibrewise topological group over B and any beB let x€ G, and W be
neighborhood of b, then from Corollary2.2.6 any neighborhood U of x there exist neighborhood
V of x such that V €U, then Gy, NV € V €U. Hence G is fibrewise regular.

Theorem 3.8 : Any fibrewise topological group is fibrewiseR,.
Proof:

Let G be a fibrewise topological group over B and any beB let x € Gy, then any neighborhood
U of x in G there exist neighborhood V of x in G such that V €U from Corollary2.2.6. Hence
any neighborhood W of b in B is Gy N {x} € Gy NV € V cU. This implies G is fibrewiseR,,.

Corollary 3.9: If G is fibrewise T, then G is fibrewise Ts;.
Proof:

Let G be fibrewise T,, then G is fibrewiseT, and from Theorem 3.8 G is fibrewiseR,. Hence G
is fibrewise T;.

Theorem 3.10 : If G is a fibrewise topological group over B, which is fibrewise T;, then G is
fibrewise completely regular.

Proof:

Let G be a fibrewise T, and any beB let x € G, and F be a closed set of G such that x & F.
Then x~1F is closed set of G not containing e and from Theorem?2.2.7 there is a continuous
function f: G — I such that f(eg) = 0 and f(y) =1 for y € x"1F. Now, the function a(g) =
f(x~1g), g€G is continuous from G to 1, then any neighborhood W of b, the
restricted ag,,: Gy — 1 is continuous and ag,, (x) = f(eg) = 0 andag,, (x') = f(x~'x") =1, for
x" €FN Gy S F. Hence G is fibrewise completely regular.

Proposition 3.11 : A closed fibrewise subgroup of fibrewise normal space is fibrewise normal.
Proof:

Let G be a fibrewise normal space and let H be a closed fibrewise subgroup of G. Let E, F be
disjoint closed sets of H and beB, then E, F are disjoint closed sets of G. Since G is fibrewise
normal then there exists a neighborhood W of b in B and two disjoint neighborhoods U, V of
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Gw NE, Gy NF in Gy. Let U' =UN Hy, V' =VN Hyy where Hy = Gy NH . ThenU’, V' are
disjoint neighborhoods of Hy, NE, Hy NF in Hyy,. Hence H is fibrewise normal space.

Proposition 3.12: Let G be a fibrewise topological group over B. If G is fibrewise Hausdorff
then G is fibrewise functionally Hausdorff.

Proof:

Let G be a Hausdorff and any beB let x,y € G, x # y then xy ™" # eg and xy ™' € G, but
eg € Gy since G is fibrewise Hausdorff then there exist two disjoint open sets U, V such that
xy~1U, eg €V then V¢ is closed and does not contain e; from Theorem?2.2.7 there exist a
continuous function f:G - 1 such that f(eg) =0,f(g) =1 for geVand xy ! € V¢ =
f(xy™1) = 1. And a(h) = f(hy™1) is continuous function from G to | and a(y) = f(eg) =0,
a(x) = f(xy™') = 1 and any nbd W of b the restricted function ag,,: Gw — I is continuous and
oy, ) = 0, ag,, (x) = 1. Hence G is fibrewise functionally Hausdorff.
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