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Oneness and existence of the solution to the problem of boundary values for
a set of second-order partial differential equations

Ol Al Sgaane Olo)
&ally palall bl 5

Abstract: Most of the problems of mathematical physics, when solving them, result in
solving one or more partial differential equations with imposed initial and boundary
conditions. This is known as boundary value problems for differential equations. This paper
studies the solution of a set of parabolic and hyperbolic partial differential equations with
boundary conditions imposed in different regions of the y o x plane
Keywords: differential equations, boundary value problems.
1. INTRODUCTION:
The research deals with the theory of mixed differential equations, which is one of the
theories currently treated by partial differential equations, and although it was first treated by
the Italian mathematician Tricomi in the forties of the last century, interest in it did not begin
in earnest, until the late seventies of the century The same, when the Dutch mathematician
Frankl pointed out their importance in solving some problems related to the movement of
gases and liquids and the curvatures of surfaces.
And the main founders of the problems of boundary values of partial differential equations are
among them Petsadze [2], Guriev [3], Kirievov [7], Sapoev [4], Alimov and Bulatov [1].
We find boundary-value problems of parabolic differential equations in works [3], [8], and we
find boundary-value problems of parabolic-hyperbolic equations in works [3], [4], [7].
As for this research, it is an extension of the research published for [one], [three], [eight], and
Salah al-Dinouf, and the oneness theorem has been proven and the existence of a solution to
the problem of boundary values for a set of partial differential equations of the second order,
as well as finding the functions that achieve these Equations in certain squares and with
imposed boundary conditions, and here | also prove that when some conditions are met, the
existence of the solution requires its oneness. She also attributed the solution to this boundary
problem to the solution of a system of linear integral equations of the second type, Friedholm
2. BASIC DEFINITIONS
- Definition of Kielder's condition:
We say: The function a(x,y) satisfies the Kielder condition with the coefficient (a) where
0 < a <1, If a positive constant k is found, the following inequality is satisfied.
la(x, ¥1) — a(x,¥2)| < kly, — ¥2|*

For any two points (x,y4), (x,y2) belonging to a square G.
- Define a regular solution
A solution to a differential equation is called regular if it and its partial derivatives are
continuous up to the second order implicit throughout problem G.
- Definition of Friedholm's Linear Equation:

If the linear integral equation is of the form:

b
v(y)—4 J k(y,mv(mpdn = p(y) (A)
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whereas:

k(y,n) is called the nucleus of the integral equation. It is a known function of the
independent variables 1 and y.

P(y) is the right side of the equation and is a known function (the free side).

v(y) is an unknown function that we want to determine.

A is a scalar mediator.

It is called Friedholm's linear integral equation of the second kind.

- Transferred Integral Equation:

If the integral equation is of the form:

b
vi(y) —4 f k(m,y)vi(mdn = p,(y) (B)

a
It is called the integral equation transferred for (A)
Let us note that the nucleus in (B) does not differ from the nucleus in (4A)except that y and n
they exchange their positions.

- Friedholm's Hypothesis in Integrative Equations

Let us distinguish the following two cases: (A) let us have the equation.

a. If A is not a distinct value for the nucleus K(Y,n) then the homogeneous integral equation
and its vector have only the zero solution, and equation (A) and its vector have only one
solution.

b. If 4 is a characteristic value for the nucleus K(Y,n), then the homogeneous equation
corresponding to (A) has solutions other than the zero solution that form a space with a
finite dimension, just as the transposon of this homogeneous equation also has solutions
other than the zero solution that form a space of the same dimension.

- Definition of kernel state
Let's look at the following series:

Hi(y,m) + AHy(y, 1) + A2H3(y, 1) + -+ A" Hp (y,m) + -,

This series is a power series in A4 and is symbolized by the symbol R(y,n, 4), and the nucleus

is called the state by H(y,n), and from it:

R(y,n,4) = Hi(y,n) + AHz(y, 1) + H3(y,n) + -+ A" "Hpy (v, ) + -

As for the solution form of the Friedholm integral linear equation of the second type using the

state nucleus, it is given by the equation:

b

v(y) =P(y) + lf R(y,n, )P(mdn
a
Among the important formulas achieved by the state kernel is the following formula:

b
R(y,m,A) = Hy(y,m) + 4 f Hy (7, )R, 1, Ddx

a
3. Presentation of the issue
Let's look at the following set of equations:

1. Uy —Uy+alx,y)U,+b(x,y)U=0 ;(x,y) € Dy
2. Uy —Uyy+a Uy +c U=0 ;(x,y) € D,
3. Uxx—Uyy+a2Ux+b2Uy+C2U:0 ;(x,y) € D3

http://tarbawej.elmergib.edu.ly 688
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This is assuming that a(x, y) is a known continuous function that is differentiable only once
in square D4 and Kielder's condition is fulfilled by coefficient a [9]. And where 0 < a <1,
and b(x,y) is a known continuous function that fulfills Kielder's condition by coefficient o in
square D.
where D4 is an open square, limited by the lines AyA, BoAy, BBy, AB whose equations,
respectively:
y=0x=1y=1,x=0(ieDy)isthesquare {0 <x < 1,0<y<1}).
where 4,(0,1),B,(1,1),B(1,0),A(0,0) and D, are a triangle limited by the lines A4y, AC,A,C
whose equations are, respectively:
x=0,x+y=0,y—x=1andwhere C(— %%) It represents an open space.
And D is a triangle limited by lines BB, BE, By E, whose equations are, in order:
x=1,x—y=1,x—-2 = —yand where E(g,%), It is also an open space.
As for a4, a,, by, by, ¢4, c3, They are optional constants.
Let's denote by D the D label.

D =D1 UAAO UUBB()UD2UD3
If we perform in (1) the following transformation:

1 X
Ulx,y) = V(x,y)exp{—— j a(t, y)dt}

2
0
We get the equation:
Vxx_Vx+C(x:y)V=0
Where:
X
C( ) = 12( ) 19 ( )+1a (t,y)dt+b
xy) = -z (xy) —55-alxy 29y a(ty xy)

Likewise, if we perform in (2) the following transformation?
U(x,y) = V(x,y)e**Fry
We get the equation:
Vix = Vyy + 24V =0
This is assuming that:

1 —aq b1
A =Z(4c§—a%—b§); @ =——; B1=>
Similarly, if in (3) we perform the following transformation:
U(x,y) = V(x,y)e®2*+Bzy
We get the equation:
Vaix =V, + 4,V =0
Where
1 dr bz
)'2 :Z(4C2—a%+b%) ; g :—? ,2 :?

For these reasons, it is sufficient to search for the following set of equations:

4. Uy — U, +C(x,y)U=0 ;(x,y) €D
5. —Uxx—Uyy—/llU= 0 ,(x,y) € D2
6. —Uxt+Uyy —2,U=0 ;(x,y) € D3

4. Matter (N)
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It is required to search for the regular solution U(x,y) for equations (4), (5) and (6) in square
D except for the points of the straight lines A4, and BB, which fulfills the condition:
U(x,y) € ¢(D;) n[e1(D, U AAy) N e'(D; U BBy) Nel(Dy UAAy U BBy)]
And also for the following boundary conditions:
7. Ulpye =P1(3); %SySl

8. Ulpr=¥,0); 0<ys<;
9. Uly=o=Xx); 0<x<1

U(-0,y) = ay(y) U(+0,y) + v1(¥)

U,(—0,y) = B1(¥)Ux(+0,y) +8:(¥)U(+0,y) + 01(¥)
10. U1+ 0,y) = a;(»)U(1 - 0,y) + v2(y)

Ux(1+0,y) =B2(y)Ux(1 - 0,y) + 82(y)U(1 - 0,y) + 62(y)
This is assuming that:

a; (y), az(y), B1(¥), B2(0), v1(¥), v2(¥), 61(¥), 62(y), 81(y), 82(y), ¥1(y), Y2 (y), —@(X)
Given and continuous functions. Moreover, the functions

oy (1), @' (%), Wo(y), P1 (1), Y1), Y2, B2 (), B1(»), &z (y) ongoing.

Let us introduce the following hypotheses:
[ UH0,y) =71 (1), U(+0,y) = vi(y),
4 U(=0,y) = 11(3), Ux(=0,y) = v1 (y),
UA+0,y) =1(30),U(1+0,y) =v;(y)
LU(l -0,y)=1;(3),U,(1-0,y) =v3(y)
As in work [4], on the lines A4, and BB, we get the two basic dependent relationships
between the functions T (y) and v; () on the one hand and between the functions 7, (y) and
v, (y) on the other hand, in squares D, and D3, respectively, as follows:

12.21(9) = p1(y) + J, Jo M (y — D91 ()dE, 0<y<1

13.7,(y) = p2() + Jy Jo [Mo(y — DT ()dt, 0<y<1
Where:

11.

1
2
)=+ [ 510 A= DO =B [2

y

y
i}
p2) = 2%, (5) ~ % 0) - [ 500 T =) (2% (3) - wa(O)lat
0

where : J, is a Bessel function of the first type and rank zero.
5. Theorem

If the following conditions are met:
14. C(x,y) <0;(x,y) €Dy

t+1
2

y+1

p1(y) = 2¥; < ) — Wy, (1)]dt;

1 S ,i[;] >0, 5» -
a1(0)$1(0) dy la1(»)B1(y) B1(y)
>0, ——|<0, 28>
az(1)B2(1) dy La; (3)B2(y) B2(y)

Then problem (N) has only one solution.
The Proof:
We will first prove the uniqueness of the solution:
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We suppose that the function U(x,y) # const in D is a solution to the following
homogeneous problem:

Uxx—Uy+C(x,y)U= 0 ;(x,y) €D
u,, - AU—o ;(xy) €D, i=23;j=1,2
Ulage = 0 U|BE =0; Uly-0=0

U(-0,y) = a;(»)U(+0,y)

Uy(=0,y) = B1(¥) Ux(+0,y) + 6:(¥) U(+0,y)

U(1+0,y) =a,(y)U(1-0,y)

U,(1+0,y) = B(y) Ux(1-0,y) +6,(»)U(1-0,y)

We will prove that the function: U(x,y) = 0 is a solution to this homogeneous problem and
accordingly the inhomogeneous problem has a single solution.

Then for D4 the following equality is true:

17.

1 1 1
~Jo U2 (x, Ddx + [ of )vi 0dy — [, 5 3)vi (y)dy +
ffDl[U,Zc + c(x,y)U?|dxdy = 0
It is necessary to find the two integrals
1

= [ owmay , j=12
0
Then from (12) and (13) and noting the conditions (10) benefiting from the definition of the

Bessel function, we find the following:
1

=[5 0w may =

0
= %Oj(l — zz)_% dz{m X [(OJ1 cos Azt U, (t)dt)* + (of sin A,zt 01 (t)dt)?]
+j[m] [(5][1 cos A1zt v, (t)dt)? +jsin/112t v, (0)dt)?]dy} — j%rl (y)dy.
I, = fr% vz (y)dy =

0
— —f(l—zz) dz{m (f cos A,zt v, (t)dt)? + f[m]
y (fcoslzztvz(t)dt)zd}’_mx (j Sind,ztv,(t)dt)? + f[m]

1

(J sind,zt v, (t)dt)*dy} — !%TZ (y)dy

0
Let us note that if all inequalities (15) and (16) are satisfied, then it is easy to obtain:
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1

= [ 0wy >0

0
1

= [ owimay <o

0
Then we conclude from (17) that: U, = 0
So: U(x,y) = u(y)
Since: U(0,y) = U(1,y) =0
Wefind:u(y) = 0
Thatis: U(x,y) =0 ;(x,y) € D4
This is on the one hand, and on the other hand and according to the oneness of solving
Cauchy's problem for the system of equations (2) and (3) in squares D, and D5, respectively,
must be U(x,y) = 0; (x,y) € D : This is a contradiction.
And by this we have demonstrated the validity and uniqueness of the solution.
Now let's move on to proving that the solution exists:
The solution to the first mixed problem for the parabola in open square D4 [3] is given as:
Ulx,y) =

[ 6e(x,y,0,mti (mdn — [) Ge(x,y, 1, M75(mdn + [J 6(x,y,& 0)p(E)dE — [ dE +

Jy CEMG(x,y; EmUE ndn (18)
Where:
Lo 1 (x+E+2n)? X _(x—§+2n)?
G(x, y' f) 77) - 2 n-(y — ’)”) exp{ 4(y _ n) }nZoo exp{ 4(y _ n) }

where G(x, y; &, 1) is the Greene function of the first mixed problem in square D;.

In order to obtain the relationship between the functions

71 (y)and vj (y) as well as the relationship between the functions 3 (y) and v{(y) on the

lines A4, and BB,, the integral equation (18) must be solved using the kernel Case [9]

Accordingly, it is:
y y y

UGy = [ G5, 0metmdn - [ 6wy, 173 (nydn + [ 0:01%,) et (dn
0

0 0
y
+ f ¢,(m; x,y) v, (mdn + P(x,y) + V(X,y)
0
Where:
Yy 1
¢1(p;x,y) = f f G:(6,t,0,MR, (x,y,0,t)dodt ;
n o
Yy 1

¢ x,y) = — f f G:(6,t,1, MR, (x,y,0,t)d0dt ;
n o
1

V(xy) = j G (x,y:£ 0)p(©)dE ;

0
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Vix,y) =fffR1 (x,y;0,t)G(0,t,¢,0)p(§)dédodt
000

Assuming that R4 (x,y; 6, t) is the nucleus of C(§,17)G(x,y,&, 1)

let us now deduce the partial derivatives:
y

I G 2 = o),
Ux|x=0=vl(y)_of{ \/ﬂ(y—n+\/7t(y—nxzexp( y_n}‘ﬁ(ﬂ)d’]

n=1

y oo
1 1 1 -1+ zn)z} {_ 1+ 211)2}]
+!{Jn(y—nexp[ J4(y—n]+2wr(y—nx 2. [exp{ e il B TOR
y y

n=-oo

x 75 (dn + f b1.(1; 0,) T (p)dn + f b2.(1:0,) T5 () + F1(y)  (19)
0
y

Urly=1 =v3(¥) = f

0

(n)dn .f{ ! i xp( nz >+ 1 exp[_—l
Jﬂ(y SNNCCED) y-n) 2/nly-n y-1

n=1

(1 +2n)?
{_W [4(3' n)] n(y - 11)Z 4(;—1:1)}

y
(1+2n)? N . N
’ z,/_n<y =l Zm P l_ y=n l’z (e + OJ 010 1,)7] () +
y

f 03 (1; 1, )T () + F2(y) 20)

Where:
C[B¥®Y) | V(xY) o
FiiO)=|—3 7+, L 0,1
By deleting the functions z; (y) and v{ (y) and 77 (y) when i = 1,2 of (12), (13) and (19),

(20) and (21) benefiting from the conditions (10), we get a set of two integral equations:
y 1 y

Vi) + f M, (y, m)vi (n)dn + ] M, (y, m)vi (n)dn + ] My (v, vy ()dn = P,y (22)
Oy 0
Vi) + f M, (y, m)vi (n)dn + ] M, (y, m)vi (n)dn + ] Mq (v, mvi)dn = P,(»);  (23)

1+2 OOE < n
exp
— y-
n=1

0
This is assuming that:

My(y,n) = B1(y)
al(n)\/n(y ),

1+22exp

)

ai(t)ym(y —t)

n
[Ay(t — m)]dn — B2 (¥) f JolAs(t — )] 1a(t; 0, Y)dt;

]
+ﬂ1(y)J ay(t) —a;y ()
0
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y
ay(t) —a;(t)

M;(y,n) = B1(y)
2(y,m) = B1(y Ofa%(t) PO
y

1) [ Jols (¢ = m1bsa(6:0, ) ~
0

>] Jol41(t —m)]dn

1+22exp<

81(MJolA1(t — )]

a(y)
M;(y,n) = az(n)ﬁ\/ﬁ;—n p[—ﬁ] +% i [exp{—%}
e f a‘;‘zg% Famg) e Gt
* _Z_w ex”{‘(;(; n ) texpl= (4(;2);}]}x%louz(t—n)]dtwl(y) j JolAz(t —m)]
bes(t0.3)dt; ()%{Z
wom= 3 enl-GG2] enl o e,
123 e (1) e[t mies 3 o[- G222]

0 610 [42(y — )]

Yy
B, f Jo [22(t = My, (61, )t

aclot ax(y)
i exp - LE 2 £.) _L]
= 4@ =1 " ay()r(y — n

~ ay () + aj(t) - C _(1+2n)
Ms(y,n) = B2(y) Of a%(t)m{exp[ 1= t)] + nZOO XP |~ 4y —n) }
n
?
~TolAs(t — mdt — () f Jola(t = 11t 1, )t

o) Jy () + (o) |-

a2 (t)/m(y —t) 4(y —t)
(1+2n)% 3 8:(0]old(y —n)]
Me(ym) = (A4 (t ~ m]dt - Z R e e

n=—o

—B:() f JolA1(t — ) d1e(6; 1, y)dt
0
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y
S Mp1(¥) —v1 ()] p1(®) —y1(D)
wm V)T ew

P1(y) = B1(MF1(y) +o:(y) + + o1t 1,y) +

t _ t U — ! ! — 7
By (£ 0, Y)}E — B1(Y) f (y — pz(‘)lz(:)/z()x {al(n)pl(n) al(n)pl(ni;ntil(n)h(n) a (myi()

[1+2 X
Z P 2 x \/n(y )
a; (n)pz(n) a; (n)pz(n) + az; (Y2 (n) a,(my2(m)
aj(n)

(o]

Py TP TP g P

n=-—oo

y
o1() +v1(0)

P,(y) = B2(0F,(y) + a,(y) + B2 (y) j X $P1(t;1,y) + oy (t; 1, y)]dt —
0

ay(t)
8, f P2(8) —v2(1) ey (mpi(m) — @y ()p1 () + ey (ya () — ax ()ya ()
: \/ (y n @ a(n)
(1 + 2n)2 1
X B2(y) exp [~ ————1}dn + x{exp - ———| +
’ Ofow/n'(y—n Z —0) [ 4(}’—71)]
N (1 +2n)? 1 N < n? )
————]}d 1+2 — :
,,:Z_wexp[ Gy el sl + (14 ;exp —
By solving equation (23) for the function v, (y), we find:
[} Mg (y, 1 () 24) () = P3() - ) My ()01 ()l
Where:

fMe & mR2(y, t)dt; M;(y,n) = Ms(y,n) +st MRz (y, t)dt + Mg(y,n) = Mg(y,m) +

y y
f Mg (6, )R2(y, dt; P3(y) = Po(3) + f P, (DR, (y, mdn;

0 0
This is assuming that R, (y, ) is the state nucleus of M, (y, n).
If we assume:
ki(ym) if 0<n<y

ke = {40

) k;(yn) if y<n<1
Substituting (24) into (22), we get the Friedholm integral equation of the second type with
respect to the function v4(y) :

1

5(y) + j k (y, ), (n)dn = P(y)
0
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Where:

y y
k() = My (y, 1) — f My (y, )M, (¢, ) dt — f My (y, ©) Mg (2, ) dt;
n n

y y
ko (y, ) = My (y, 1) — f Ms (y, Mg (t, ))dit; P(y) = P1(y) — ] My (y,)P3(D)dt.

n n

Hence, based on Friedholm's hypothesis in the integrative equations and based on the proof of
the oneness of the solution, the integrative equation (25) has a single continuous solution.
Then from the relations (10), (12), (13), (23), (25) the functions are determined in a unique
way

v; (), 1M, v3 (M, VI, Tz (), 1 (1), (), T ()

Thus, we get the solution to the problem in square D4. The solution in squares D, and D is
done similarly to solving the Cauchy problem in the xoy plane.

Thus, we have proven that there is a solution to the issue at hand.
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