Fekete-Szegö inequality for Certain Subclass of Analytic Functions

Aisha Ahmed Amer
Al-Margib University, Faculty of Science
Mathmatics Department
eamer_80@yahoo.com

Abstract

: In this present work, the author obtain Fekete-Szegö inequality for certain classes of parabolic starlike and uniformly convex functions involving certain generalized derivative operator defined in [1].

1 Introduction

Let A denote the class of all analytic functions in the open unit disk

$$
\mathrm{U}=\{z \in \mathrm{C}:|z|<1\},
$$

and Let H be the class of functions f in A given by the normalized power series

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in \mathrm{U}) \tag{1}
\end{equation*}
$$

Let S denote the class of functions which are univalent in U .
A function f in H is said to be uniformly convex in U if f is a univalent convex function along with the property that, for every circular arc γ contained in U , with centre γ also in U , the image curve $f(\gamma)$ is a convex arc. Therefore, the class of uniformly convex functions is denoted by $U C V$ (see [3]).

It is a common fact from [12], [13] that, for $z \in \mathrm{U}$, that

$$
\begin{equation*}
f \in U C V \Leftrightarrow\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f(z)}\right\} \quad,(z \in \mathrm{U}) \tag{2}
\end{equation*}
$$

Condition (2) implies that

$$
1+\frac{z f^{\prime \prime}(z)}{f(z)}
$$

lies in the interior of the parabolic region

$$
R:=\left\{w: w=u+i v \text { and } v^{2}<2 u-1\right\},
$$

for every value of $z \in \mathrm{U}$. Let

$$
P:=\{p: p \in A ; p(0)=1 \quad \text { and } \quad \mathfrak{R}(p(z))>0 ; \quad z \in \mathrm{U}\}
$$

and

$$
P A R:=\{p: p \in P \quad \text { and } \quad p(\mathrm{U}) \subset R\} .
$$

A function f in H is said to be in the class of parabolic starlike functions, denoted by $S P$ (cf. [13]), if

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in R \quad,(z \in \mathrm{U})
$$

Let the functions f given by (1) and

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k},(z \in \mathrm{U})
$$

then the Hadamard product (convolution) of f and g, defined by :

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k},(z \in \mathrm{U})
$$

Now, $(x)_{k}$ denotes the Pochhammer symbol (or the shifted factorial) defined by
$(x)_{k}=\left\{\begin{array}{c}1 \quad \text { for } k=0, \\ x(x+1)(x+2) \ldots(x+k-1)\end{array}\right.$ for $k \in \mathrm{~N}=\{1,2,3, \ldots\}$.

The authors in [1] have recently introduced a new generalized derivative operator $I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)$ as the following:
to derive our generalized derivative operator, we define the analytic function
$\varphi^{m}\left(\lambda_{1}, \lambda_{2}, l\right)(z)=z+\sum_{k=2}^{\infty} \frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} z^{k}$,
where $\quad m \in \mathrm{~N}_{0}=\{0,1,2, \ldots\}$ and $\lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0$.
Definition 1 For $f \in A$ the operator $I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$ is defined by

$$
\begin{align*}
& I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right): A \rightarrow A \\
& \qquad I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)=\varphi^{m}\left(\lambda_{1}, \lambda_{2}, l\right)(z) * R^{n} f(z), \quad(z \in \mathrm{U}) \tag{4}
\end{align*}
$$

where $m \in \mathrm{~N}_{0}=\{0,1,2, \ldots\} \quad$ and $\quad \lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0, \quad$ and $\quad R^{n} f(z)$ denotes the Ruscheweyh derivative operator [4], and given by

$$
R^{n} f(z)=z+\sum_{k=2}^{\infty} c(n, k) a_{k} z^{k},\left(n \in \mathrm{~N}_{0}, z \in \mathrm{U}\right)
$$

where $c(n, k)=\frac{(n+1)_{k-1}}{(1)_{k-1}}$.
If $f \in H$, then the generalized derivative operator is defined by

$$
I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)=z+\sum_{k=2}^{\infty} \frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} c(n, k) a_{k} z^{k}
$$

where $\quad n, m \in \mathrm{~N}_{0}=\{0,1,2, \ldots\}$, and $\lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0, c(n, k)=\frac{(n+1)_{k-1}}{(1)_{k-1}}$.
Special cases of this operator includes:

- the Ruscheweyh derivative operator [4] in the cases:

$$
\begin{aligned}
& I^{1}\left(\lambda_{1}, 0, l, n\right) \equiv I^{1}\left(\lambda_{1}, 0,0, n\right) \equiv I^{1}(0,0, l, n) \equiv I^{0}\left(0, \lambda_{2}, 0, n\right) \\
& \equiv I^{0}(0,0,0, n) \equiv I^{m+1}(0,0, l, n) \equiv I^{m+1}(0,0,0, n) \equiv R^{n}
\end{aligned}
$$

- the S a 1 a gean derivative operator [5]:

$$
\begin{aligned}
& I^{m+1}(1,0,0,0) \equiv S^{n} \\
& I^{2}\left(\lambda_{1}, 0,0, n\right) \equiv R_{\lambda}^{n}
\end{aligned}
$$

- the generalized Ruscheweyh derivative operator [6]:
- the generalized $\mathrm{S} \hat{a} 1 \hat{a}$ gean derivative operator introduced by Al-Oboudi [7]: $I^{m+1}\left(\lambda_{1}, 0,0,0\right) \equiv S_{\beta}^{n}$,
- the generalized Al-Shaqsi and Darus derivative operator[8]: $I^{m+1}\left(\lambda_{1}, 0,0, n\right) \equiv D_{\lambda, \beta}^{n}$,
- the Al-Abbadi and Darus generalized derivative operator [9]: $I^{m}\left(\lambda_{1}, \lambda_{2}, 0, n\right) \equiv \mu_{1_{1}, \lambda_{2}}^{n, m}$, and finally
- the Catas drivative operator [10]: $I^{m}\left(\lambda_{1}, 0, l, n\right) \equiv I^{m}(\lambda, \beta, l)$.

Using simple computation one obtains the next result.

$$
(l+1) I^{m+1}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)=\left(1+l-\lambda_{1}\right)\left[I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) * \varphi^{1}\left(\lambda_{1}, \lambda_{2}, l\right)(z)\right] f(z)+
$$

$$
\begin{equation*}
\lambda_{1} z\left[\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) * \varphi^{\prime}\left(\lambda_{1}, \lambda_{2}, l\right)(z)\right]^{\prime} .\right. \tag{5}
\end{equation*}
$$

Where $(z \in \mathrm{U})$ and $\varphi^{1}\left(\lambda_{1}, \lambda_{2}, l\right)(z)$ analytic function and from (3) given by

$$
\varphi^{\prime}\left(\lambda_{1}, \lambda_{2}, l\right)(z)=z+\sum_{k=2}^{\infty} \frac{1}{\left(1+\lambda_{2}(k-1)\right)} z^{k} .
$$

Definition 2 Let $S P^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$ be the class of functions $f \in H$ satisfying the inequality :

$$
\begin{equation*}
\left|\frac{z\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right)^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}-1\right|<\mathfrak{R}\left\{\frac{z\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)\right)^{\prime}}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}\right\}, \quad(z \in \mathrm{U}) . \tag{6}
\end{equation*}
$$

Note that many other operators are studied by many different authors, see for example [19, 20, 21]. There are times, functions are associated with linear operators and create new classes (see for example [18]). Many results are considered with numerous properties are solved and obtained.

However, in this work we will give sharp upper bounds for the Fekete-Szegö problem. It is well known that Fekete and Szegö [14] obtained sharp upper bounds for $\left|a_{3}-\mu a_{2}^{2}\right|$ for the case $f \in S$ and μ is real. The bounds have been studied by many since the last two decades and the problems are still being popular among the writers. For different subclasses of S, the FeketeSzegö problem has been investigated by many authors including [14, 12, 15, 16, 17], few to list. For a brief history of the Fekete-Szegö problem see [17].In the present paper we completely solved the Fekete-Szegö problem for the class $S P^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$ defined by using $I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$.

2 Fekete-Szegö problem for the class $S P^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$

Here we obtain sharp upper bounds for the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions f belonging to the class $S P^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$,

Let the function f, given by

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots,(z \in \mathrm{U}), \tag{7}
\end{equation*}
$$

be in the class $S P^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$. Then by geometric interpretation there exists a function w satisfying the conditions of the Schwarz 'lemma such that

$$
\frac{z\left(I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)^{\prime} f(z)\right)}{I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)}=q(w(z)), \quad(z \in \mathrm{U}) .
$$

It can be verified that the Riemann map q of U onto the region R, satisfying $q(0)=1$ and $q_{0}(0)>0$, is given by

$$
\begin{aligned}
& q(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2} \\
& =1+\frac{8}{\pi^{2}} \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{2 k+1}\right) z^{n} \\
& =1+\frac{8}{\pi^{2}}\left(z+\frac{2}{3} z^{2}+\frac{23}{45} z^{3}+\frac{44}{105} z^{4}+\ldots\right), \quad(z \in \mathrm{U}) .
\end{aligned}
$$

Let the function P_{1} in P be defined by

$$
p_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in \mathrm{U})
$$

Then by using

$$
w(z)=\frac{p_{1}(z)-1}{p_{1}(z)+1},
$$

we obtain

$$
a_{2}=\frac{4(1+l)^{m-1}\left(1+\lambda_{2}\right)^{m}}{\pi^{2}\left(1+\lambda_{1}+l\right)^{m-1}(n+1)} c_{1}
$$

and

$$
a_{3}=\frac{4(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left(c_{2}-\frac{c_{1}^{2}}{6}\left(1-\frac{24}{\pi^{2}}\right)\right) .
$$

These expressions shall be used throughout the rest of the paper.
In order to prove our result we have to recall the following lemmas:
Lemma 1 [11] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is an analytic function with positive real part in U , then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq\left\{\begin{array}{lcc}
-4 v+2 & \text { if } & v \leq 0 \\
2 & \text { if } & 0 \leq v \leq 1 \\
4 v+2 & \text { if } & v \geq 1
\end{array}\right.
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $\frac{(1+z)}{(1-z)}$ or one of its rotations. If $0<v<1$, then the equality holds if and only if $p_{1}(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} a\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} a\right) \frac{1-z}{1+z} \quad(0 \leq a<1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if $p_{1}(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $v=0$. Also the above upper bound is sharp, and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right| \leq 2, \quad\left(0<v \leq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right| \leq 2, \quad\left(\frac{1}{2}<v \leq 1\right) .
$$

Lemma 2 [2] Let h be analytic in U with $\mathfrak{R}\{h(z)\}>0$ and be given by $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$, for $z \in \mathrm{U}$, then

$$
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2}
$$

Lemma 3 [11] Let $h \in P$ where $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$.
Then

$$
\left|c_{n}\right| \leq 2, \quad n \in \mathrm{~N},
$$

and

$$
\left|c_{2}-\frac{1}{2} \mu c_{1}^{2}\right| \leq 2+\frac{1}{2}(|\mu-1|-1)\left|c_{1}\right|^{2}
$$

Theorem 1 If f be given by (1) and belongs to the class $S P^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right)$. Then, $\left|a_{3}-\mu a_{2}^{2}\right| \leq$

$$
\left\{\begin{array}{c}
\frac{16(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[\frac{4 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}(k-1)+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{1}{3}-\frac{4}{\pi^{2}}\right] \quad \text { if } \quad \mu \leq \sigma_{1}, \\
\frac{8(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \quad \text { if } \quad \sigma_{1} \leq \mu \geq \sigma_{2}, \tag{8}\\
\frac{16(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[\frac{1}{3}+\frac{4}{\pi^{2}}-\frac{4 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}(k-1)+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right] \quad \text { if } \quad \mu \leq \sigma_{2},
\end{array}\right.
$$

where

$$
\begin{align*}
\sigma_{1} & =\frac{\left(1+2 \lambda_{2}\right)^{m}\left(1+\lambda_{1}+l\right)^{2(m-1)}(n+1)}{(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+2)}\left(1+\frac{5 \pi^{2}}{24}\right), \tag{9}\\
\sigma_{2} & =\frac{\left(1+2 \lambda_{2}\right)^{m}\left(1+\lambda_{1}+l\right)^{2(m-1)}(n+1)}{(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+2)}\left(1-\frac{\pi^{2}}{24}\right) \tag{10}
\end{align*}
$$

each of the estimates in (8) is sharp.
Proof: An easy computation shows that

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right|=\frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \\
& \leq \frac{\left|\left(\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{1}{3}-\frac{8}{\pi^{2}}\right) c_{1}^{2}-2 c_{2}\right|}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \tag{11}\\
& \quad\left[\left(\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{5}{3}-\frac{8}{\pi^{2}}\right)\left|c_{1}\right|^{2}+2\left|c_{1}^{2}-c_{2}\right|\right] .
\end{align*}
$$

If $\mu \geq \sigma_{1}$, then the expression inside the first modulus on the right-hand side of (12) is nonnegative.

Thus,by applying Lemma 3 ,we get

$$
=\frac{16(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}
$$

$$
\begin{equation*}
\left[\left(\frac{4 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{1}{3}-\frac{4}{\pi^{2}}\right)\right] \tag{13}
\end{equation*}
$$

which is the assertion (8). Equality in (13) holds true if and only if $\left|c_{1}\right|=2$. Thus the function f is $k(z ; 0 ; 1)$ or one of its rotations for $\mu>\sigma_{1}$.

Next, if $\mu \leq \sigma_{2}$, then we rewrite (11) as

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|=\frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \\
& \left|\left(\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}+\frac{1}{3}-\frac{8}{\pi^{2}}\right) c_{1}^{2}-2 c_{2}\right| \\
& \leq \frac{16(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left|\left(\frac{1}{3}+\frac{8}{\pi^{2}}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right)\right|
\end{aligned}
$$

The estimates $\left|c_{2}\right| \leq 2$ and $\left|c_{1}\right| \leq 2$, after simplification, yield the second part of the assertion (8), in which equality holds true if and only if f is a rotation of $k(z ; 0 ; 1)$ for $\mu<\sigma_{2}$, If $\mu=\sigma_{2}$, then equality holds true if and only if $\left|c_{2}\right|=2$. In this case, we have

$$
p_{1}(z)=\left(\frac{1+v}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-v}{2}\right) \frac{1-z}{1+z} \quad(0 \leq v<1 ; z \in \mathrm{U}) .
$$

Therefore the extremal function f is $k(z ; 0 ; v)$ or one of its rotations.
Similarly, $\mu=\sigma_{1}$, is equivalent to

$$
\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{5}{3}-\frac{8}{\pi^{2}}=0 .
$$

Therefore, equality holds true if and only if $\left|c_{1}^{2}-c_{2}\right|=2$.
This happens if and only if

$$
\frac{1}{p_{1}(z)}=\left(\frac{1+v}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-v}{2}\right) \frac{1-z}{1+z} \quad,(0 \leq v<1 ; z \in \mathrm{U}) .
$$

Thus the extremal function f is $k(z ; \pi ; v)$ or one of its rotations.

Finally, we see

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|=\frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \\
& \left|2\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\left(\frac{8}{\pi^{2}}+\frac{2}{3}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right) c_{1}^{2}\right|
\end{aligned}
$$

and

$$
\max \left|\frac{8}{\pi^{2}}+\frac{2}{3}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right| \leq 1, \quad\left(\sigma_{1} \leq \mu \geq \sigma_{2}\right) .
$$

Therefore, using Lemma 3, we get

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[2\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\left|c_{1}\right|^{2}\right] \\
& =\frac{8(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \quad \text {,if } \quad \sigma_{1} \leq \mu \geq \sigma_{2}
\end{aligned}
$$

If $\sigma_{1}<\mu<\sigma_{2}$, then equality holds true if and only if $\left|c_{1}\right|=0$ and $\left|c_{2}\right|=0$. Equivalently, we have

$$
p_{1}(z)=\frac{1+v z^{2}}{1-v z^{2}} \quad,(0 \leq v \leq 1 ; z \in \mathrm{U}) .
$$

Thus the extremal function f is $k(z ; 0 ; 0)$ or one of its rotations.

3 IMPROVEMENT OF THE ESTIMATION

Theorem 2 If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then in view of Lemma , Theorem can be improved as follows:

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\frac{\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}{(1+l)^{m-1}\left(1+\lambda_{2}\right)^{m}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+2)}\left(1-\frac{\pi^{2}}{24}\right)\right)\left|a_{2}\right|^{2} \\
& \leq \frac{8(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}(k-1)+l\right)^{m-1}(n+1)(n+2)} \quad\left(\sigma_{2} \leq \mu \leq \sigma_{3}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}{(1+l)^{m-1}\left(1+\lambda_{2}\right)^{m}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+2)}\left(1+\frac{5 \pi^{2}}{24}\right)-\mu\right)\left|a_{2}\right|^{2} \\
& \leq \frac{8(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}(k-1)+l\right)^{m-1}(n+1)(n+2)} \quad\left(\sigma_{3} \leq \mu \leq \sigma_{1}\right),
\end{aligned}
$$

where σ_{1} and σ_{2} are given, as before, by (9), (10), and

$$
\sigma_{3}=\frac{\left(1+2 \lambda_{2}\right)^{m}\left(1+\lambda_{1}+l\right)^{2(m-1)}(n+1)}{(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+2)}\left(1+\frac{\pi^{2}}{12}\right) .
$$

Proof: For the values of $\sigma_{1} \leq \mu \leq \sigma_{3}$, and from Lemma 2 we have

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}\right|^{2} \leq \\
& \frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[2\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\left(\frac{8}{\pi^{2}}+\frac{2}{3}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right)\left|c_{1}\right|^{2}\right] \\
& +\frac{16(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{4}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[\frac{\mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}(n+2)}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)}-\left(1-\frac{\pi^{2}}{24}\right)\right]\left|c_{1}\right|^{2} \\
& \leq \frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[4-\left|c_{1}\right|^{2}+\left(\frac{8}{\pi^{2}}+\frac{2}{3}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right)\left|c_{1}\right|^{2}\right. \\
& \left.+\left(\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{8}{\pi^{2}}+\frac{1}{3}\right)\left|c_{1}\right|^{2}\right] \\
& =\frac{8(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} .
\end{aligned}
$$

Similarly, if $\sigma_{2} \leq \mu \leq \sigma_{3}$, we can write

$$
\begin{aligned}
& \quad\left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}\right|^{2} \leq \frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} \\
& {\left[2\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\left(\frac{8}{\pi^{2}}+\frac{2}{3}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}(n+2)}{\pi^{2}\left(1+\lambda_{1}(k-1)+l\right)^{m-1}(n+1)}\right)\left|c_{1}\right|^{2}\right]} \\
& \quad+\frac{16(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{4}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[1+\frac{5 \pi^{2}}{24}-\frac{\mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right]\left|c_{1}\right|^{2} \\
& \quad \leq \frac{2(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)}\left[4-\left|c_{1}\right|^{2}+\left(\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}-\frac{8}{\pi^{2}}-\frac{2}{3}\right)\left|c_{1}\right|^{2}\right. \\
& \left.+\left(\frac{8}{\pi^{2}}+\frac{5}{3}-\frac{8 \mu(1+l)^{m-1}\left(1+\lambda_{2}\right)^{2 m}\left(1+2 \lambda_{1}+l\right)(n+2)}{\pi^{2}\left(1+\lambda_{1}+l\right)^{2(m-1)}\left(1+2 \lambda_{2}\right)^{m}(n+1)}\right)\left|c_{1}\right|^{2}\right] \\
& =\frac{8(1+l)^{m-1}\left(1+2 \lambda_{2}\right)^{m}}{\pi^{2}\left(1+2 \lambda_{1}+l\right)^{m-1}(n+1)(n+2)} .
\end{aligned}
$$

References

[1] A. A. Amer and M. Darus, On some properties for new generalized derivative operator, Jordan Journal of Mathematics and Statistics (JJMS), 4(2) (2011), 91-101.
[2] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, G"ottingen, (1975).
[3] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87-92 (1991).
[4] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. Vol. 49, 1975, pp. 109-115.
[5] G. S.S â 1 â gean, Subclasses of univalent functions, Lecture Notes in Math. (SpringerVerlag), 1013, (1983), 362-372.
[6] K. Al-Shaqsi and M. Darus, An operator defined by convolution involving polylogarithms functions, J. Math. Stat., 4(1), (2008), 46-50.
[7] F.M. AL-Oboudi, On univalent functions defined by a generalised $\mathrm{S} \hat{a} 1 \hat{a}$ gean Operator, Int, J. Math. Math. Sci. 27, (2004), 1429-1436.
[8] K. Al-Shaqsi and M. Darus, Differential Subordination with generalised derivative operator, Int. J. Comp. Math. Sci, 2(2)(2008), 75-78.
[9] M. H. Al-Abbadi and M. Darus,Differential Subordination for new generalised derivative operator, Acta Universitatis Apulensis, 20, (2009),265-280 .
[10] A. Catas ,On a Certain Differential Sandwich Theorem Associated with a New Generalized Derivative Operator, General Mathematics. 4 (2009), 83-95.
[11] W. Ma and D. Minda, "A unifed treatment of some special classes of univalent functions ,in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren,L. Yang, and S. Zhang(Eds.), Internat. Press (1994), 157-169.
[12] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57, 165-175 (1992).
[13] E. R ϕ nning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189-196 .
[14] M. Fekete, G. Szeg., Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933) 85-89.
[15] H.M. Srivastava, A.K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39 (3-4)(2000) 57-69.
[16] M.Darus, I. Faisal and M.A.M. Nasr, Differential subordination results for some classes of the family $\zeta(v, \theta)$ associated with linear operator, Acta Univ. Sapientiae, MATHEMATICA, 2(2) (2010), 184-194.
[17] M.A. Al-Abbadi and M. Darus. Differential subordination defined by new generalised derivative operator for analytic functions, Inter. Jour. Math. Math. Sci. 2010 (2010), Article ID 369078, 15 pages.
[18] S. F. Ramadan and M.Darus. Generalized differential operator defined by analytic functions associated with negative coefficients, Jour. Ouality Measurement and Analysis, 6(1) (2010), 75-84. 59.
[19] R. W. Ibrahim and M. Darus. On univalent function defined by a generalized differential operator. Journal of Applied Analysis (Lodz), 16(2) (2010), 305-313.
[20] Aisha Ahmed Amer , Second Hankel Determinant for New Subclass Defined by a Linear Operator, Springer International Publishing Switzerland 2016, Chapter 6.
[21] Aisha Ahmed Amer , Properties of Generalized Derivative Operator to A Certain Subclass of Analytic Functions with Negative Coefficients,. 2017 ، 21 ،

