

חجلة التربوكا مجلة علمية مרكمة تصار عنَكليةالتربية جامعة المرقبا

العدد العشرون
يناير 2022م

هيئـــة تحريـر
 هجلة التربوي

$$
\begin{aligned}
& \text { - المجلة ترحب بما يرد عليها من أبحاث وعلى استعداد لنشر ها بعد التحكيم . } \\
& \text { • المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها } \\
& \text { • • كافة الآراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها الاتها } \\
& \text { - } \\
& \text { • الثجوث المقدمة لللشر لا ترد لأصحابها نشرت أو لم تنشر } \\
& \text { (حقوق الطبع محفوظة للكلية) }
\end{aligned}
$$

يشترط في البحوث العلمية المقدمة للنشر أن ير اعى فيها ما يأتي : . أصول البحث العلمي وقواعده - ألا تكون المادة العلمية قد سبق نشر ها أو كانت جزء الـوا من رسالة علمية . .

- تتعدل البحوث المقبولة وتصحح وفق ما ير اه المحكمون .
- التزام الباحث بالضوابط التي وضعتها المجلة من عدد الصفحات ، ونوع الخط ورقمه ، والفترات الزمنية الممنوحة للتعديل ، وما يستجد من ضوابط تضعها المجلة مستقبلا . تنبيهات :
- للمجلة الحق في تعديل البحث أو طلب تعديله أو رفضه . - يخضع البحث في النشر لأولويات المجلة وسياستها . - البحوث المنشورة تعبر عن وجهة نظر أصحابها ، ولا تعبر عن وجهة نظر المجلة .

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research.
2- The research articles or manuscripts should be original and have not been published previously. Materials that are currently being considered by another journal or is a part of scientific dissertation are requested not to be submitted.
3- The research articles should be approved by a linguistic reviewer.
4- All research articles in the journal undergo rigorous peer review based on initial editor screening.
5- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.
2 - The research articles undergo to the policy of the editorial board regarding the priority of publication.
3- The published articles represent only the authors' viewpoints.

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثير العربي 1.5 العدد 20

An Active-Set Line-Search Algorithm for Solving Multi-Objective Transportation Problem

Ebtisam Ali Haribash ${ }^{1}$ and A.A.H. Abd EL-Mwla ${ }^{2}$
Faculty of Science, El-Mergib University ${ }^{1}$, Faculty of Science, Omar Al-Mukhtar University, Derna ${ }^{2}$

eaharibash@elmergib.edu.ly ${ }^{1}$, aziza.abdelmwla@yahoo.com ${ }^{2}$

Abstract

In this paper, an algorithm is proposed to solve multi-objective transportation (MOT) problem, where the MOT problem converting to a single-objective constrained optimization (SOCO) problem by using weighted method. In the proposed algorithm an active set strategy is used together with multiplier method to transform SOCO problem to unconstrained optimization problem and we used an active-set line-search algorithm to solve it. In this work, the effect of changing weights on MOT problem is studied to show the degree of satisfaction of each objective. We also make a comparative study between our proposed approach and different approaches treated the multi-objective transportation problem before. The proposed approach is carried out on two multi-objective transportation test problems. Key Words: Multi-objective transportation problem, Line-search, weighting approach.

1 Introduction

Transportation problem is an optimization problem involves the transportation or physical distribution of goods from several supply points to various destinations in such a way so that the total transportation cost is minimum. When a transportation problem involves more than one objective function, the task of finding one or more optimal solutions is known as multi objective transportation problem. For multiple

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثئر العربي 10 20

conflicting objectives, there cannot be a single optimum solution which simultaneously optimizes all the objectives. The resulting outcome is a set of optimal solutions with varying degree of objective values. The multi-objective transportation problem is of great interest to many researchers and several local methods have been proposed to solve it (see, [16], [17], [22], [23]).

In this work, we convert the MOT problem to a SOCO problem by using a weighting approach. The oldest and most widely used method of combining objective, proposed by Zadeh [27]. Ease of use and user preferences are advantages to reflect on the model. All effective solution to generate value in the field and has the condition of being convex objective functions

In this paper an active set strategy is used together with the multiplier method. The general idea behind the active-set strategy is to identify at every iteration, the active inequality constraints and treat them as equalities. This allows the use of the well-developed techniques for solving the equality constrained optimization problems. Many authors have proposed active-set algorithms for solving a general nonlinear programming problem (see, [12-15], [19]). The main idea of the multiplier methods is to replace the equality constrained optimization problem with a sequence of unconstrained optimization problem and at the same time the penalty parameter needs not to go to infinity (see, [9], [21]).

A line-search globalization strategy is used to modify the local method in such a way that it is guaranteed to converge at all even if the starting point is far from the solution and improves the solution quality for the same approach. Line search method is iterative method. The iterations choose a search direction by moving along the direction while taking an appropriate step size. Line-search rules can be classified into two types, exact line search rules and inexact line search rules. Many

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثّثد العربي 20

researchers believe the exact line search is time-consuming to be carried out or impossible to find in practical computation. Therefore we opt to use the inexact line searches to identify the step size that will ensure a substantial reduction in function at minimum cost. Many inexact line-search methods have been proposed (see, [1], [18], [25]) and others.

Here, we introduce some notations for subscripted functions denote function values at particular points; for example, $f_{k}=f\left(x_{k}\right), \nabla f_{k}=\nabla f\left(x_{k}\right), L_{k}=L\left(x_{k}, \lambda_{k}\right)$, $\nabla_{x} L_{k}=\nabla_{x} L\left(x_{k}, \lambda_{k}\right)$, and so on. The matrix H_{k} denotes the Hessian of the objective function at the point (x_{k}) or an approximation to it. Finally, all norms are l_{2}-norms.

The paper is organized as follows. In section 2, presents some preliminaries of MOT problem and some definitions. Section 3, the proposed algorithm is presented. Section 4 contains of a numerical illustration of the proposed approach, two examples are solved and compare our results with the other methods. Finally, Section 5 contains concluding remarks.

2. Preliminaries

2.1 Mathematical Formulation of MOT Problem.

In MOT problem the product is to be transported from m sources to n destination points. The cost of transporting a unit form source i to destination j is also denoted as $c_{i j}$, this can be considered to be delivery time, cost of damage, or safety of delivery, etc. A variable $x_{i j}$ represents the unknown quantity to be shipped from source i to destination j. Let their capacities be $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$, respectively. The objectives are to minimize the total cost of transportation, delivery time, and/or damage cost. Let $f_{1}, f_{2}, \ldots, f_{p}$ be p objectives which are to be

| Nournal of Educational |
| :--- | :---: | :---: |
| ISSN: 2011-421X |
| Arcif Q3 |

minimized. With these assumptions, the MOT problem can be formulated as follows:

$$
\begin{array}{cc}
\text { minimize } & f_{k}(x)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}^{k} x_{i j}, k=1,2, \ldots, p \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=a_{i}, i=1,2, \ldots, m \tag{1}\\
& \sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots, n \\
& x_{i j} \geq 0, \quad i=1,2, \ldots, m, j=1,2, \ldots, n
\end{array}
$$

2.2 Definitions of solution concept

In this subsection, some definitions regarding the solution concept of the MOT problem (1) are introduced.
Definition 1 (Pareto optimal Solution [20])
A feasible decision vector $x^{*}=\left\{x_{i j}^{*}\right\} \in S$ is Pareto optimal solution, a nondominated or efficient solution for MOT problem (1) iff there does not exist another feasible decision vector $x=\left\{x_{i j}\right\} \in S$ such that

- $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}^{k} x_{i j} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}^{k} x_{i j}^{*} \quad$ for all $k=1,2, \ldots, p$.
- $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}^{k} x_{i j}<\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}^{k} x_{i j}^{*} \quad$ for at least one index k.

Definition 2 (Compromise Solution [20])

A compromise solution of the MOT problem (1) is a feasible solution which is preferred by the DM over all other feasible solutions, taking into consideration all criteria contained in the multi-objective functions.

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل الثأثّثير العربي 1.5 العدد 20

3. The Proposed Approach

In this section, the proposed algorithm is presented. The proposed algorithm contains two stages initialization stage and active-set line-search algorithm stage.

3.1. Initialization stage

- Converting MOT problem (1) to SOCO problem:

By using the weighting approach, the MOT problem (1) is converted to the following SOCO problem with equality and inequality constraints problem

$$
\begin{array}{ll}
\operatorname{minimize} & F=\sum_{k=1}^{p} \sum_{i=1}^{m} \sum_{j=1}^{n} w_{k} c_{i j}^{k} x_{i j}, \\
\text { subject to } \quad & \sum_{j=1}^{n} x_{i j}=a_{i}, i=1,2, \ldots, m \tag{2}\\
& \sum_{i=1}^{m} x_{i j}=b_{j}, \quad j=1,2, \ldots, n \\
& x_{i j} \geq 0, \quad i=1,2, \ldots, m, j=1,2, \ldots, n
\end{array}
$$

where $\sum_{k=1}^{p} w_{k}=1$ and $w_{k} \geq 0$ for all k.
The above problem can be written as follows:

$$
\begin{array}{ll}
\text { minimize } & F(x) \\
\text { subject to } & y(x)=0, \tag{3}\\
& z(x) \leq 0,
\end{array}
$$

	مجــة الـتـربـوي Journal of Educational ISSN: 2011- 421X Arcif Q3	معامل الثأثير العربي 1.5 العدد 20

Where $y(x)=\left[\sum_{j=1}^{n} x_{i j}-a_{i}, \sum_{i=1}^{m} x_{i j}-b_{j}\right]$ and $z(x)=\left[x_{i j}\right]^{T}, i=1,2, \ldots, m$, $j=1,2, \ldots, n$. The function $F: R^{n \times m} \rightarrow R, y: R^{n \times m} \rightarrow R^{n+m}$, and $z: R^{n \times m} \rightarrow R^{n \times m}$ are twice continuously differentiable.

- Converting the SOCO problem with equality and inequality constraints problem (3) to equality constrained problem:
Following the active set strategy in [10], we define a 0-1 diagonal indicator matrix $U(x) \in R^{(n \times m) \times(n \times m)}$, whose diagonal entries are

$$
u_{e}(x)=\left\{\begin{array}{l}
1 \text { if } z(x) \geq 0, \\
0 \text { if } z(x)<0,
\end{array}\right.
$$

Using the above matrix, we transform Problem (3) to the following equality constrained optimization problem

$$
\begin{align*}
& \text { minimize } F(x) \\
& \text { subject to } y(x)=0, \tag{4}\\
& \frac{1}{2} \tilde{z}(x) U(x) \tilde{z}(x)=0,
\end{align*}
$$

The above problem can be rewritten as:

$$
\begin{array}{ll}
\text { minimize } & F(x) \\
\text { subject to } & Y(x)=0, \tag{5}
\end{array}
$$

where $Y(x) \in R^{n+m}$ such that $Y(x)=\left[y(x) \frac{1}{2} \tilde{z}(x) U(x) \tilde{z}(x)\right]$.
The Lagrangian function associated with the above problem is the function

$$
\begin{equation*}
L(x, \lambda)=F(x)+\lambda^{T} Y(x) \tag{6}
\end{equation*}
$$

where $\lambda \in R^{n+m}$ is the Lagrangian multiplier vector associated with the equality constraint $Y(x)$.
Using an augmented Lagrangian method, we transform the equality constrained

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأئير العربي 20

optimization problem (5) to the following unconstrained optimization problem

$$
\begin{align*}
& \operatorname{minimize} \emptyset(x, \lambda ; r)=L(x, \lambda)+\frac{r}{2}\|Y(x)\|^{2} \\
& \text { subject to } \quad x \in R^{n \times m} \tag{7}
\end{align*}
$$

where r is a parameter usually called the penalty parameter.

3.2 Active-set line-search algorithm stage

In this subsection, we present the description of the active set line-search algorithm which is used to solve the single-objective problem (7). Then we present the main algorithm that is used to solve the MOT problem.

3.2.1 Computing a search direction d_{k}

At the point x_{k}, we used a quasi-Newton method to find the search direction d_{k} which is minimizes the quadratic model

$$
\begin{equation*}
m_{k}(d)=L_{k}+\nabla_{x} L_{k}^{T} d+\frac{1}{2} d^{T} B_{k} d+\frac{r_{k}}{2}\left\|H_{k}+\nabla Y_{k}^{T} d\right\|^{2} \tag{8}
\end{equation*}
$$

where B_{k} is the Hessian matrix of the Lagrangian function (6) or an approximation to it. If $\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right)$ is a positive definite matrix, then $x_{k}+d_{k}$ uniquely minimizes the quadratic form (8) where d_{k} satisfies

$$
\begin{equation*}
\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right) d=-\left(\nabla_{x} L_{x}+r_{k} \nabla Y_{k} Y_{k}\right) \tag{9}
\end{equation*}
$$

Since we always require, for all k , the quasi-Newton direction d_{k} be a descent direction, i.e

$$
\begin{equation*}
\nabla_{x} \emptyset\left(x_{k}, \lambda_{k} ; r_{k}\right)^{T} d_{k} \leq 0, \tag{10}
\end{equation*}
$$

then the matrix $\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right)$ must be positive definite (see, [11]). To check the matrix $\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right)$ is positive definite, we useTarazaga's condition (see, [26]). This condition says that, if

	Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثير العربي 20 العد

$$
\operatorname{trace}\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right)-(n-1)^{\frac{1}{2}}\left\|B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right\|_{F}>0
$$

then $B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}$ is positive definite. Otherwise, we update the diagonal of the matrix ($B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}$) by adding a positive large number ρ to the diagonal and compute the search direction d_{k} by solving

$$
\begin{equation*}
\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}+\rho_{k} I\right) d=-\left(\nabla_{x} L_{x}+r_{k} \nabla Y_{k} Y_{k}\right) \tag{11}
\end{equation*}
$$

3.2.2 Computing a step length $\boldsymbol{\alpha}_{\boldsymbol{k}}$

Once the descent direction d_{k} is determined we compute a step length α_{k} along the descent direction and set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$. We used the backtracking line-search to find the step length α_{k}, where α_{k} satisfies the sufficient decrease condition

$$
\begin{equation*}
\emptyset\left(x_{k}+\alpha_{k} d_{k}, \lambda_{k} ; r_{k}\right) \leq \emptyset\left(x_{k}, \lambda_{k} ; r_{k}\right)+\sigma \alpha_{k} \nabla \varnothing\left(x_{k}, \lambda_{k} ; r_{k}\right)^{T} d_{k} \tag{12}
\end{equation*}
$$

where $\sigma \in(0,1)$ is a fixed constant (see [1]). This process is summarized in the following algorithm.

Algorithm 1 (Backtracking Line-Search Algorithm)

Step 0. (Initialization)
Given $\sigma \in(0,1), \eta \in(0,1)$, and set $\alpha_{k}=1$.
Step 1. While $\emptyset\left(x_{k}+\alpha_{k} d_{k}, \lambda_{k} ; r_{k}\right)>\emptyset\left(x_{k}, \lambda_{k} ; r_{k}\right)+\sigma \alpha_{k} \nabla \emptyset\left(x_{k}, \lambda_{k} ; r_{k}\right)^{T} d_{k}$ set $\alpha_{k}=\eta \alpha_{k}$.

End while.
Step 2. Set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

3.2.3 Updating λ_{k+1} and r_{k}

Once x_{k+1} computed, we update the Lagrange multiplier λ_{k}. To estimate the Lagrangian multiplier vector λ_{k+1} we solve

$$
\operatorname{minimize}_{\lambda \in R^{n+m}}\left\|\nabla f_{k+1}+\nabla Y_{k+1} \lambda\right\|^{2}
$$

After updating the Lagrangian multiplier, the penalty parameter is updated. To

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011- 421X Arcif Q3	معامل التأثيّير العربي 1.5

update r_{k}, we use the scheme that was proposed by Bertsekas (1995) [8]. The adjustment scheme is to increase r_{k} by multiplication with a factor $\zeta>1$ only if the constraint violation as measured by $\left\|Y_{k+1}\right\|$ is not decreased by a factor $\gamma<1$ over the previous minimization; i.e.,

$$
r_{k+1}=\left\{\begin{array}{c}
\zeta r_{k} \text { if }\left\|Y\left(x_{k+1}\right)\right\|>\gamma\left\|Y\left(x_{k}\right)\right\|, \tag{13}\\
r_{k} \text { if }\left\|Y\left(x_{k+1}\right)\right\| \leq \gamma\left\|Y\left(x_{k}\right)\right\|,
\end{array}\right.
$$

Finally, the algorithm is terminated when $\left\|\nabla_{x} L_{k}\right\|+\left\|\nabla Y_{k} Y_{k}\right\| \leq \varepsilon_{1}$, or $\left\|d_{k}\right\| \leq \varepsilon_{2}$, for some $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$.

3.2.4 Active set line-search algorithm

The main steps of our active-set line-search algorithm are explained in detail as follows:

Algorithm 2 (Active-Set Line-Search Algorithm)

Step 0. (Initialization)
Given $x_{0} \in R^{n \times m}$. Compute U_{0} and λ_{0}. Choose $0<\sigma<1,0<\eta<1$, $\gamma>0, \zeta>0, \varepsilon_{1}>0$, and $\varepsilon_{2}>0$. Set $r_{0}=1$ and $k=0$.

Step 1. If $\left\|\nabla_{x} L_{k}\right\|+\left\|\nabla Y_{k} Y_{k}\right\| \leq \varepsilon_{1}$. Then terminate the algorithm.
Step 2. Compute the search direction d_{k} by solving (9).
Step 3. If $\nabla_{x} \emptyset\left(x_{k}, \lambda_{k} ; r_{k}\right)^{T} d_{k}<\varepsilon_{1}$, then go to Step 5 .

$$
\text { Else, set } \rho_{k}=10^{3} \text {. }
$$

While trace $\left(B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right)-(n-1)^{\frac{1}{2}}\left\|B_{k}+r_{k} \nabla Y_{k} \nabla Y_{k}^{T}\right\|_{F} \leq \varepsilon_{1}$.

$$
\text { Set } \rho_{k}=2 \rho_{k} \text {. }
$$

End while.

End if.

Step 4. Compute the search direction d_{k} by solving (11).

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل الثأثير العربي 1.5 العدد 20

Step 5. If $\left\|d_{k}\right\| \leq \varepsilon_{2}$. Then terminate the algorithm.
Step 6. Compute the step length α_{k} as follows
a) $\operatorname{Set} \alpha_{k}=1$.

While $\emptyset\left(x_{k}+\alpha_{k} d_{k}, \lambda_{k} ; r_{k}\right)>\emptyset\left(x_{k}, \lambda_{k} ; r_{k}\right)+\sigma \alpha_{k} \nabla \varnothing\left(x_{k}, \lambda_{k} ; r_{k}\right)^{T} d_{k}$
$\operatorname{Set} \alpha_{k}=\eta \alpha_{k}$.
End while.

$$
\text { b) Set } x_{k+1}=x_{k}+\alpha_{k} d_{k} \text {. }
$$

Step 7. Compute U_{k+1}.
Step 8. Compute the Lagrangian multiplier λ_{k+1} by solving

$$
\operatorname{minimize}_{\lambda \in R^{n+m}}\left\|\nabla f_{k+1}+\nabla Y_{k+1} \lambda\right\|^{2}
$$

Step 9. To update the penalty parameter r_{k}.

$$
\text { If } \begin{aligned}
& \left\|Y\left(x_{k+1}\right)\right\|>\gamma\left\|Y\left(x_{k}\right)\right\| \\
& \text { then set } r_{k+1}=\zeta r_{k} . \\
& \text { Else, set } r_{k+1}=r_{k} . \\
& \text { End if. }
\end{aligned}
$$

Step 10. Set $k=k+1$ and go to Step 1 .

4 Numerical Illustrations

In this section, we introduce two illustrative examples two examples of MOT problem are considered. The proposed algorithm was implemented on 2.7 MHZ PC using MATLAB 7.9 to confirm the effectiveness of the algorithm.

4.1 Implementation details

For implementing the proposed approach, the parameters have been selected as follows: $\sigma=0.1, \eta=0.5, \zeta=2, \gamma=0.25$. Successful termination with respect to our line-search algorithm means that the termination condition of the algorithm is

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثئير العربي 1.5 العدد 20

met with $\varepsilon_{1}=10^{-6}$ and $\varepsilon_{2}=10^{-8}$. On the other hand, unsuccessful termination means that the number of iterations is greater than 500 , the number of function evaluations is greater than 800 .

4.2 Example 1

Consider the MOT problem mentioned in ([2-4], [7], [15], [28]). To illustrate the application of the proposed algorithm. The problem has the following characteristics:

$$
c^{1}=\left[\begin{array}{llll}
1 & 2 & 7 & 7 \\
1 & 9 & 3 & 4 \\
8 & 9 & 4 & 6
\end{array}\right] \quad \text { and } \quad c^{2}=\left[\begin{array}{cccc}
4 & 4 & 3 & 4 \\
5 & 8 & 9 & 10 \\
6 & 2 & 5 & 1
\end{array}\right]
$$

with Supplies $a_{1}=8, a_{2}=19$, and $a_{3}=17$ and demands $b_{1}=11, b_{2}=3$, $b_{3}=14$, and $b_{4}=16$.

The mathematical programming model of the above problem is written as follows:

$$
\begin{gathered}
\text { minimize } f_{1}=x_{11}+2 x_{12}+7 x_{13}+7 x_{14} \\
+x_{21}+9 x_{22}+3 x_{23}+4 x_{24} \\
+8 x_{31}+9 x_{32}+4 x_{33}+6 x_{34} \\
\text { minimize } f_{2}=4 x_{11}+4 x_{12}+3 x_{13}+4 x_{14} \\
+5 x_{21}+8 x_{22}+9 x_{23}+10 x_{24} \\
+6 x_{31}+2 x_{32}+5 x_{33}+x_{34} \\
\text { subject to } \quad x_{11}+x_{12}+x_{13}+x_{14}=8 \\
x_{21}+x_{22}+x_{23}+x_{24}=19 \\
x_{31}+x_{32}+x_{33}+x_{34}=17 \\
x_{11}+x_{21}+x_{31}=11 \\
x_{12}+x_{22}+x_{32}=3 \\
x_{13}+x_{23}+x_{33}=14
\end{gathered}
$$

| معامل التأثير العربيJournal of Educational
 ISSN: 2011-421X
 Arcif Q3 |
| :--- | :---: | :---: |

$$
\begin{aligned}
& x_{14}+x_{24}+x_{34}=16 \\
& \qquad x_{i j} \geq 0, \quad i=1,2,3, \quad j=1,2,3,4
\end{aligned}
$$

4.2.1 Results and Discussions of Example 1:

A weighting approach is used together with the active-set line search algorithm (2) to solve the above problem. The solution obtained for different weights is given in Table 1 and by discussing the effect of changing weights on the two objective functions f_{1} and f_{2}, we note from Figure (1) that the best value of w_{1} is 0.4 and w_{2} is 0.6 , which give $f_{1}=177$ and $f_{2}=178$ as the best compromise solution.

To evaluate the performance of the suggested approach we compare the best results with the recently reported methods are given in Table 2.

Table 1. Compromise objective values corresponding to priorities

	Weights assigned	f_{1}, f_{2}
1	$w_{1}=0.0, w_{2}=1.0$	188,171
2	$w_{1}=0.1, w_{2}=0.9$	193,173
3	$w_{1}=0.2, w_{2}=0.8$	189,175
4	$w_{1}=0.3, w_{2}=0.7$	184,177
5	$w_{1}=0.4, w_{2}=0.6$	177,178
6	$w_{1}=0.5, w_{2}=0.5$	175,181
7	$w_{1}=0.6, w_{2}=0.4$	174,182
8	$w_{1}=0.7, w_{2}=0.3$	163,199
9	$w_{1}=0.8, w_{2}=0.2$	158,201
10	$w_{1}=0.9, w_{2}=0.1$	156,204
11	$w_{1}=1.0, w_{2}=0.0$	155,206

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثئير العربي 1.5 العدد 20

Table 2. Comparison between different approaches.

| The name of approach | f_{1} | f_{2} |
| :--- | :---: | :---: | :---: |
| Interactive approach [24] | 186 | 174 |
| Fuzzy approach $\quad[2]$ | 170 | 190 |
| Fuzzy approach $\quad[7]$ | 160 | 195 |
| IFGP approach [3] | 168 | 185 |
| Trust Region Approach [6] | 173 | 173 |
| Proposed approach | 177 | 178 |

Figuer 1: Plot showing the values of f_{1} and f_{2} as w_{1} or w_{2} changes linearly

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل الثأثّير العربي 1.5 العدد 20

4.3 Example 2

Consider the MOT problem mentioned in ([4] , [24]). To illustrate the application of the proposed algorithm. The problem has the following characteristics:

$$
\begin{gathered}
c^{1}=\left[\begin{array}{ccccc}
9 & 12 & 9 & 6 & 9 \\
7 & 3 & 7 & 7 & 5 \\
6 & 5 & 9 & 11 & 3 \\
6 & 8 & 11 & 2 & 2
\end{array}\right], c^{2}=\left[\begin{array}{lllll}
2 & 9 & 8 & 1 & 4 \\
1 & 9 & 9 & 5 & 2 \\
8 & 1 & 8 & 4 & 5 \\
2 & 8 & 6 & 9 & 8
\end{array}\right], \\
\text { and } \\
c^{3}=\left[\begin{array}{llllll}
2 & 4 & 6 & 3 & 6 \\
4 & 8 & 4 & 9 & 2 \\
5 & 3 & 5 & 3 & 6 \\
6 & 9 & 6 & 3 & 1
\end{array}\right]
\end{gathered}
$$

with Supplies $a_{1}=5, a_{2}=4, a_{3}=2$, and $a_{4}=9$ and demands $b_{1}=4, b_{2}=4$, $b_{3}=6, b_{4}=2$, and $b_{5}=4$. The mathematical programming model of the above problem is written as follows:

$$
\begin{gathered}
\text { minimize } \begin{aligned}
f_{1} & =9 x_{11}+12 x_{12}+9 x_{13}+6 x_{14}+9 x_{15} \\
& +7 x_{21}+3 x_{22}+7 x_{23}+7 x_{24}+5 x_{25} \\
& +6 x_{31}+5 x_{32}+9 x_{33}+11 x_{34}+3 x_{35} \\
& +6 x_{41}+8 x_{42}+11 x_{43}+2 x_{44}+2 x_{45}, \\
\text { minimize } f_{2}= & 2 x_{11}+9 x_{12}+8 x_{13}+x_{14}+4 x_{15} \\
+ & x_{21}+9 x_{22}+9 x_{23}+5 x_{24}+2 x_{25} \\
+8 x_{31} & +x_{32}+8 x_{33}+4 x_{34}+5 x_{35} \\
+ & 2 x_{41}+8 x_{42}+6 x_{43}+9 x_{44}+8 x_{45}
\end{aligned} \\
\text { minimize } f_{3}=2 x_{11}+4 x_{12}+6 x_{13}+3 x_{14}+6 x_{15}
\end{gathered}
$$

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل الثأثئر العربي 1.5 العدد 20

$$
\begin{gathered}
+4 x_{21}+8 x_{22}+4 x_{23}+9 x_{24}+2 x_{25} \\
+5 x_{31}+3 x_{32}+5 x_{33}+3 x_{34}+6 x_{35} \\
+6 x_{41}+9 x_{42}+6 x_{43}+3 x_{44}+x_{45} \\
\text { subject to } \quad x_{11}+x_{12}+x_{13}+x_{14}+x_{15}=5 \\
x_{21}+x_{22}+x_{23}+x_{24}+x_{25}=4 \\
x_{31}+x_{32}+x_{33}+x_{34}+x_{35}=2 \\
x_{41}+x_{42}+x_{43}+x_{44}+x_{45}=9 \\
x_{11}+x_{21}+x_{31}+x_{41}=4 \\
x_{12}+x_{22}+x_{32}+x_{42}=4 \\
x_{13}+x_{23}+x_{33}+x_{43}=6 \\
x_{14}+x_{24}+x_{34}+x_{44}=2 \\
x_{15}+x_{25}+x_{35}+x_{45}=4 \\
x_{i j} \geq 0, i=1,2,3,4 j=1,2,3,4,5
\end{gathered}
$$

4.2.2 Results and Discussions of Example 2:

A weighting approach is used together with the active-set line search algorithm (2) to solve the above problem. As one weight is changed linearly in each case, the other two weights are generated randomly, such that
$\sum_{k=1}^{3} w_{k}=1$ and $w_{k} \geq 0$ for all $k=1,2,3$. The values of the weights which are used for three cases are illustrated in three tables (3-5).
Figures (2-4), show the objective functions obtained from six solutions corresponding to the six weights compared to the weights for three cases. We observe that the best compromise solutions are $f_{1}=130, f_{2}=105$ and $f_{3}=76$ which are occur at w_{1} is $0.8000, w_{2}$ is 0.1759 and w_{3} is 0.0241 .

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل الثأثّثير العربي 1.5 العدد 20

To evaluate the performance of the suggested approach we compare the best results with the recently reported methods are given in Table 6.

Table 3. Different weights (w_{1} is changed linearly)

Run	w_{1}	w_{2}	w_{3}
1	0.0000	0.5721	0.4279
2	0.2000	0.6205	0.1795
3	0.4000	0.2118	0.3882
4	0.6000	0.1636	0.2364
5	0.8000	0.1759	0.0241
6	1.0000	0.0000	0.0000

Table 4. Different weights (w_{2} is changed linearly)

Run	w_{1}	w_{2}	w_{3}
1	0.6028	0.0000	0.3972
2	0.5676	0.2000	0.2324
3	0.4573	0.4000	0.1427
4	0.2718	0.6000	0.1282
5	0.1468	0.8000	0.0532
6	0.0000	1.0000	0.0000

Table 5. Different weights (w_{3} is changed linearly)

Run	w_{1}	w_{2}	w_{3}
1	0.7477	0.2523	0.0000
2	0.5994	0.2006	0.2000

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل الثأثير العربي 1.5 العدد 20

3	0.4576	0.1424	0.4000
4	0.1354	0.2646	0.6000
5	0.1076	0.0924	0.8000
6	0.0000	0.0000	1.0000

Table 6. Comparison between different approaches.

The name of approach	$\boldsymbol{f}_{\mathbf{1}}$	$\boldsymbol{f}_{\mathbf{2}}$	$\boldsymbol{f}_{\mathbf{3}}$
Fuzzy approach [2]	112	106	80
Interactive approach [3]	127	104	76
Trust Region Approach [6]	144	104	73
Product approach [5]	157	72	86
Proposed approach	130	105	76

Figuer 2: Plot showing the values of f_{1}, f_{2} and f_{3} solution for different weights in 6 runs of table 3 .

| معامل\| التأثير العربيJournal of Educational
 ISSN: 2011- 421X
 Arcif Q3 |
| :--- | :---: | :---: |

Figuer 3: Plot showing the values of f_{1}, f_{2} and f_{3} solution for different weights in 6 runs of table 4.

Figuer 4: Plot showing the values of f_{1}, f_{2} and f_{3} solution for different weights in 6 runs of table 5 .

5 Concluding Remarks

In this paper an algorithm is proposed for a MOT problem and this approach is used to find the compromise solution of MOT problem. A weighting approach is used together with an active set strategy and a multiplier method to transform MOT problem to unconstrained optimization problem and we used an active-set line-

| معامل التأثير العربيJournal of Educational
 ISSN: 2011-421X
 Arcif Q3 |
| :---: | :---: | :---: |

search algorithm to solve it.
Two Numerical examples are illustrated and obtained results compared with some of the methods in literature. The comparison shows that the compromise solution is better and acceptable in real life situation when more than one objective available in transporting a product.

References

[1] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16 (1966)1-3. http://dx.doi.org/10.2140/pjm.1966.16.1
[2] F. W. Abd El-Wahed, A Multiobjective Transportation Problem under Fuzziness, Fuzzy Sets and Systems, 1(2001)27-33.
[3] F. W. Abd El-Wahed and S. M. Lee, Interactive Fuzzy Goal Programming for Multiobjective Transportation Problems, Omega, 2 (2006)158-166.
[4] P. Y. Aneja and K. P. K. Nair, Bicriteria Transportation Problems, Management Science, 1(1979)73-80.
[5] A. E. Afwat, A. A. Salama, and N. Farouk, A New Efficient Approach to Solve Multi-Objective Transportation Problem in the Fuzzy Environment (Product approach), International Journal of Applied Engineering Researc, 18(2018) 13660-13664.
[6] Y. Abo-elnaga, B. El-sobky, and H. Zahed, Trust Region Algorithm for Multiobjective Transportation, Assignment, and Transshipment Problems, Life Science Journal, 9(2012)1765-1772

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأنثر العربي 20 20

[7] K. A. Bit, M. P. Biswal and S. S. Alam, Fuzzy Programming Approach to Multicriteria Decision Making Transportation Problem, Fuzzy Sets and Systems, 2(1992)35-41.
[8] D. Bertsekas, Nonlinear programming. Athena Scientific, (1995).
[9] D. Bertsekas, Constrained optimization and Lagrange multiplier methods, Athena Scientific, Belmont, Massachusetts, (1996).
[10] J. Dennis, M. El-Alem, and K. Williamson, A trust-region approach to nonlinear systems of equalities and inequalities, SIAM J Optimization, 9(1999), 291-315.
[11] J. Dennis, and R. Schnabel, Numerica methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood cliffs, New Jersey, 1983.
[12] B. El-Sobky, Arobust trust-region algorithm for general nonlinear constrained optimization problems, PhD thesis, Department of Mathematics, Alexandria University, Alexandria, Egypt, 1998.
[13] B. El-Sobky, A global convergence theory for an active trust region algorithm for solving the general nonlinear programming problem. Applied Mathematics and computation archive, 144(2003)127-157.
[14] B. El-Sobky, Y. Abo-Elnaga and E. Hrebish, A Hybrid Optimization Technique for Solving Multi-Objective Power Flow Problem, Journal of the MITTEILUNGEN KLOSTERNEUBURG, 67(2017)
[15] M. El-Alem, B. EL-Sobky, Y. Abo-Elnaga and E. Ali, I-SHOT line-search algorithm for solving multi-objective economic emission load dispatch problem, Inter- national Mathematical Forum, 15(2016)703-720.
[16] M. Gen, K. Ida Kono and Y. Li. Solving Bi-Criteria Solid Transportation

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنر العربي 20

Problem by Genetic Algorithm. Proceeding of
the 16th International Conference on Computers and Industrial Engineering, (1994) 572-575.
[17] M. Gen , Y. Li, and K. Ida Kono. Solving Multi-objective Transportation Problem by Spanning Tree-Based Genetic Algorithm, IEICE Transactions on Fundamentals, 2(1999)2802-2810.
[18] A. Goldstein, On steepest descent, SIAM Journal on Control, 3 (1965)147-151. http://dx.doi.org/10.1137/0303013.
[19] E. A. Haribash, An Interactive GUESS Method for Solving Nonlinear Constrained Multi-Objective Optimization Problem, Journal of Educational, (2021)52-70.
[20] K. Miettinen. Non-linear multiobjective optimization, Dordrecht: Kluwer Academic Publisher, (2002).
[21] M. Maciel, and G. Sottosanto, An augmented penalization algorithm for the equality constrained minimization problem, Tendencias em Matematica Aplicada e Computacional, 2(2002)171-180.
[22] Z. Michalewicz, G. Vignaux and M. Hobbs. A Non-Standard Genetic Algorithm for the Nonlinear Transportation Problem. ORSA Journal on Computing, 4(1991)307-316.
[23] Z. Michalewicz, Genetic Algorithms + Data structure $=$ Evolution Programs. 1994. Second, extended. 1996. Third, revised and extended ed. Springer-Verlag, New York.

	مجــة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثير العربي 1.5 العدد 20

[24] L. J. Ringuest and D. B. Rinks, Interactive Solutions for the Linear Multiobjective Transportation Problems, European Journal Operational Research, 1(1987)96-106.
[25] Z. Shi and X. Zhang, From line search method to trust region method, International Symposium on OR and its Applications, (2005)156-170.
[26] P. Tarazaga, More estimates for eigenvalues and singular values. Linear Algebra and its Applications, 149(1991)97-110.
[27] L. Zadeh, Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control: 59 (1963).
[28] A. S. Zaki, A. A. Mousa, H. M. Geneedi and A. Y. Elmekawy, Efficient Multiobjective Genetic Algorithm for Solving Transportation, Assignment and Transshipment Problems, Applied Mathematics, (2012)92-99

	Journal of Educational ISSN: 2011-421X Arcif Q3	1.5

الصفحة	اسم الباحث	عنوان البحث	ت,
25-3	زهرة المهـي أبوراس فاطمة أحمد قناو	النسرّب الاراسي لاي طلاب الجامعات	1
43-26	علي فرج جامد فاطمة جبريل القايد	استعمالات الأرض اللزراعية في منطقة سوق الخمس	2
57-44	ابتسام عبد السلام كشيب	تأثير صناعة الإسمنت على البيئة مصنع إسمنت لبدة نموذجاً دراسة في الجغر افية الصناعي	3
84-58	عطية صالح علي الربيقي خالد رمضان الجربوع منصور علي سالم ظليفة	مفهوم الشعر عند نقاد القرن الرابع الهجري	4
106-85	فتحية علي جعفر أمنة محمد العكاشي ربيعة عثمان عبد الجليل	جودة الحياة لدى طلبة كلية التزبية بالخمس	5
128-107	Ebtisam Ali Haribash A.A.H. Abd EL-Mwla	An Active-Set Line-Search Algorithm for Solving MultiObjective Transportation Problem	6
140-129	مفنّاح سالم ثبوت	آليات بناء النص عند بدر شاكر السياب قر اءة في قصيدة تموز جيكور	7
155-141	مفتاح ميلاد الهريف جمعة عبد الحميد شنيب	الجرائم الالكترونية	8
176-156	Suad H. Abu-Janah	On the fine spectrum of the generalized difference over the Hahn sequence space $\boldsymbol{B}(\boldsymbol{r}, \boldsymbol{s}) \quad$ operator h	9
201-177	فوزية محمد الحوات سالمة محمد ضو	دراسة تأثير النضاد الكيميائي Allelopathy لمستخلصات بعض النجاتات Triticum aestivum L. الطبية على نسبة الانبات ونمو نبات القمح	10
219-202	سليمة محمد خضر	الأعداد الضبابية	11
240-220	S. M. Amsheri N. A. Abouthfeerah	On a certain class of $\boldsymbol{p}_{\text {-valent functions }}$ with negative coefficients	12
241-253	Abdul Hamid Alashhab	L'écriture de la violence dans la littérature africaine et plus précisément dans le théâtre Ivoirien Mhoi-Ceul comédie en 5 tableaux de Bernard B. Dadié	13
254-265	Shibani K. A. Zaggout F. N	Electronic Specific Heat of Multi Levels Superconductors Based on the BCS Theory	14

	مجــلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثير العربي 20

266-301	خالد رمضان محمد الجربوع عطية صالح علي الربيقي	أغراض الشعر المستجدة في العصر العباسي	15
302-314	M. J. Saad, N. Kumaresan Kuru Ratnavelu	Oscillation Criterion for Second Order Nonlinear Differential Equations	16
315-336	صالح عبد السلام الكيلاني ساره مفتاح الزني فـدو ظليل سالم	الققم الجمالية لفن الفسيفساء عند	17
337-358	عبدالمنعم امحمد سالم	مفهوم السلطة عند المعتزلة وإِوان الصفاء	18
359-377	أسماء حامد عبدالحفظ اعليجه	مستوى الوعى البيئي ودور بعض القيم الاجتماعية في رفعه لدى عينّ لـينة من طلاب كلية الآداب الو اقعة داخل نطاق مدينة الخمس.	19
378-399	بنور ميلاد عمر العماري	المؤسسات التعليمية ودورها في الو قاية من الانحر الت والجريمة	20
400-405	Mohammed Ebraheem Attaweel Abdulah Matug Lahwal	Application of Sawi Transform for Solving Systems of Volterra Integral Equations and Systems of Volterra Integro-differential Equations	21
406-434	Eman Fathullah Abusteen	The perspectives of Second Year Students At Faculty of Education in EL-Mergib University towards Implementing of Communicative Approach to overcome the Most Common Challenges In Learning Speaking Skill	22
435-446	Huda Aldweby Amal El-Aloul	Sufficient Conditions of Bounded Radius Rotations for Two Integral Operators Defined by q-Analogue of Ruscheweyh Operator	23
447-485	سعاد مفنّاح أحمد مرجان	مستوى الوعي بمخاطر النتلوث البيئي لاى معلمي المرحلة الثانوية بمدينة الخمس	24
486-494	Hisham Zawam Rashdi Mohammed E. Attaweel	A New Application of Sawi Transform for Solving Ordinary differential equations with Variable Coefficients	25
495-500	محمد على أبو النور فر ج مصطفى الهـار بشير على الطيب	استخدام التحليل الإحصائي لدر اسة العلاقة بين أنظمة الري وكمية المياه المستهكة بمنطقة سوق الخميس - الخس	26
501-511	نرجس ابر اهيم محمد	النقييم المنهجي للمو اد الرياضية و الاحصائية نسبة الى المو اد التخصصية لكلوم الحاسوب	27
512-536	بشري محمد الهيلي حنان سعيد العوراني عفاف محمد بالحاج	طرق التزبية الحدبثة للأطفال	28
537-548	ضو محمد عبد الهادي فاروق مصطفى ايور اوي زهرة صبحي سعيد نجاح عمران المهوي	در اسة للحد من الثلوت الكهرومغناطيسي باستخدام مركب ثاني أكسيد الحديد مع بوليمر حضض الاكتيك	29

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

549-563	Ali ahmed baraka Abobaker m albaboh Abdussalam a alashhab	Cloud Computing Prototype for Libya Higher Education Institutions: Concept, Benefits and Challenges	30
564-568	Muftah B. Eldeeb	Euphemism in Arabic Language: The case with Death Expressions	31
569-584	Omar Ismail Elhasadi Mohammed Saleh Alsayd Elhadi A. A. Maree	Conjugate Newton's Method for a Polynomial of degree $\mathrm{m}+1$	32
585-608	آمنة سالم عبد القادرقدروة آلاء عبدالسلام محمد سويسي ليلى علي محمد الجاعوك	الصحد النفسية وعلافتها بتفير الذات لدى عينة من طلبة كلية الآداب والعلوم / مسلانه	33
609-625	نجاة سالم عبد اله زريق	المساندة الاجتماعية لاى عبنة من المعلمات بمدينة تصر الأخبار وعلاقتها بيعض المتغيرات الديموغر افية "در اسة ميدانية"	34
626-640	محمد سالم ميلاد العابر	"أي" بين الآسمية و الفطلية عاملة ومعمولة	35
641-659	إٕر اهيم فر فج الحويج	التمييز في القر آن الكريم سورة الكهف ألْموذجا	36
660-682	عبد السلام ميلاد المركز رجعة سعيد الجنقاوي	المو ارد الطبيعة و البشرية السياحية بدينة طر ابلس (بلييا)	37
683-693	Ibrahim A. Saleh Abdelnaser S. Saleh Youssif S M Elzawiei Farag Gait Boukhrais	Influence of Hydrogen content on structural and optical properties of doped nano-a-Si:H/a-Ge: H multilayers used in solar cells	38
694-720	فر ج رمضان مفتاح الثبيلي	أجوبة الشيخ علي بن أبي بكر الحضيري $\text { (ت:1061 هـ - } 1650 \text { م) }$	39
721-736	علي خليفة محمد أجويلي	مفهوم الهوية عند محمد أركون	40
737-742	Mahmoud Ahmed Shaktour	Current -mode Kerwin, Huelsman and Newcomb (KHN) By using CDTA	41
743-772	Salem Msauad Adrugi Tareg Abdusalam Elawaj Milad Mohamed Alhwat	University Students' Attitudes towards Blended Learning in Libya: Empirical Study	42
773-783	Alhusein M. Ezarzah Aisha S. M. Amer Adel D. El werfalyi Khalil Salem Abulsba Mufidah Alarabi Zagloom	Integrated Protected Areas	43
784-793	عبد الرحمن المهاي ابومنجل	المظاهر ات بين المانعين والمجوزين	44
794-817	رضا القذفي بشير الاسمر	تنرجيحات الامام الباجي من خلال كتابه المنتقي " من باب العناقة و الو لاء الىى كتاب الجامع	45

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثر العربد 20

$818-829$	Fadela M. Elzalet Sami A. S. Noba omar M. A. kaboukah	IDENTIFICATION THE OPTIMUM PRODUCTION PROCESS OF THE HYDROGEN GAS	46
830			

