

العدد الثانى عشر يناير 2018م

رئيس التحرير: د. عطية رمضان الكيلاني مدير التحرير: د. علي أحمد ميلاد سكرتير المجلة: م. عبد السلام صالح بالحاج

المجلة ترحب بما يرد عليها من أبحاث وعلى استعداد لنشرها بعد التحكيم. المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها كافة الآراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها . يتحمل الباحث مسؤولية الأمانة العلمية وهو المسؤول عما ينشر له . البحوث المقدمة للنشر لا ترد لأصحابها نشرت أو لم تنشر حقوق الطبع محفوظة للكلية

بحوث العدد

- "تحفة الأنام بتوريث ذوى الأرحام" در اسة وتحقيقا
- الاستفهام ودلالاته في شعر خليفة التليسي
 قراءة في التراث النقدي عند العرب حتى أو اخر القرن الرابع الهجري
 - الكناية في النظم القرآني (نماذج مختارة)
- حذف حرف النداء "يا" من اسم الإشارة واسم الجنس واختلاف النحاة في ذلك
 - (أيّ) الموصولة بين البناء والإعراب
 - موج النحاة في الوصف بــــ(إلا)
 - تقنية المعلومات ودورها في تنمية الموارد البشرية بجامعة المرقب
 - در اسة الحل لمنظومة المعادلات التفاضلية الخطية باستخدام تحويل الزاكي
 - أساليب مواجهة ضنغوط الحياة اليومية لدى طالبات كلية التربية
- برنامج علاج معرفي سلوكي مقترح لخفض مستوى القلق لدى عينة من المراهقات
 - هجرة الكفاءات الليبية إلى الخارج
 - صيد الأسماك في منطقة الخمس و آثار ه الاقتصادية •
- Determination of (ascorbic acid) in Vitamin C Tablets by Redox Titration •
- Physical and Chemical Properties Analysis of Flax Seed Oil (FSO) for Industrial Applications
- Catalytic Cracking of Heavy Gas Oil (HGO) Fraction over H-Beta, H-ZSM5 and Mordinite Catalysts
- Monitoring the concentration (Contamination) of Mercury and cadmium in Canned Tuna Fish in Khoms, Libyan Market
- EFFECT CURCUMIN PLANT ON LIVER OF RATS WITH TREATED • TRICHLOROETHYLENE
- Comparative study of AODV, DSR, GRP, TORA AND OLSR routing techniques in • open space long distance simulation using Opnet

العدد 12

- Solution of some problems of linear plane elasticity in doubly-connected regions by the method of boundary integrals
- Common Fixed-Point Theorems for Occasionally Weakly Compatible Mappings in Fuzzy 2-Metric Space
- THE STARLIKENESS AND CONVEXITY OF P-VALENT FUNCTIONS INVOLVING CERTAIN FRACTIONAL DERIVATIVE OPERATOR
- Utilizing Project-Based Approach in Teaching English through Information Technology and Network Support
- An Acoustic Study of Voice Onset Time in Libyan Arabic

Amal Abdulsalam Shamila, Soad Muftah Abdurahman, Fatma Mustafa Omiman Department of Mathematics, Faculty of Sciences, ElMergib University, Al-Khums, Libya

Abstract

The purpose of this paper is to obtain some common fixed point theorems in fuzzy 2-metric space under the condition of occasionally weakly compatible mappings.

Keywords: Fuzzy 2-metric space, occasionally weakly compatible mappings, coincidence point and common fixed point.

1. Introduction

It proved a turning point in the development of fuzzy mathematics when the notion of fuzzy set was introduced by Zadeh [8] in 1965. Since then, many authors developed the theory of fuzzy sets and its applications. Following the concept of fuzzy sets, fuzzy metric spaces have been introduced by Kramosil and Michaleck [5] in 1975 which was later modified by George and Veeramani [1] with the help of continuous t-norm in 1994. Consequently in due course of time some metric fixed point results were generalized to fuzzy metric spaces by various authors. Later in 2008, Kumar [17] defined the concept of fuzzy 2-metric space akin to 2-metric space which was introduced by Gähler [12] and obtained a generalization of Banach contraction principle in fuzzy 2-metric spaces. In 1998, Jungck and Rhoades [4] introduced the notion of weakly compatible mappings in metric spaces, after that, Singh and Jain [2] formulated the notion of weakly compatible mappings in fuzzy metric spaces. This condition has further been weakened by introducing the notion of occasionally weakly compatible mappings by Al-Thagafi and Shahzad [10]. While Khan and Sumitra [9] extended the notion of occasionally weakly compatible mappings in fuzzy metric spaces and proved some common fixed point theorems. In recent years, several authors proved various fixed point theorems employing more generalized conditions in difference spaces [2], [3], [6], [7], [11], [13], [14], [15], [16], [18], [19]. In this paper, we prove the existence and uniqueness of some common fixed point theorems for pairs of occasionally weakly compatible mappings in fuzzy 2-metric space by using commutative conditions.

2. Preliminaries

Definition 2.1. Let X be any nonempty set. A fuzzy set M in X is a function with domain X and values in [0,1].

Definition 2.2. A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-

norm if it satisfies the following conditions:

(1)* is associative and commutative,

(2) * is continuous function,

(3)a * 1 = a for all $a \in [0,1]$,

(4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0,1]$.

Examples of t-norm are a * b = ab and $a * b = min \{a, b\}$.

Definition 2.3. The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set in $X \times X \times [0, \infty)$ satisfying the following conditions: for all $x, y, z \in X$ and t, s > 0

(1)M(x,y,t) > 0,

(2)M(x, y, t) = 1 for all t > 0 if and only if x = y,

(3)M(x,y,t) = M(y,x,t),

 $(4)M(x, z, t + s) \ge M(x, y, t) * M(y, z, s),$

 $(5)M(x, y, .): [0, \infty) \rightarrow [0, 1]$ is a left continuous function.

Note that, the function value M(x, y, t) can be considered as the degree of nearness between x and y with respect to t.

Example: Let $X = \mathbb{R}$. Define a * b = ab for all $a, b \in [0,1]$ and

$$M(x, y, t) = \left[exp\frac{|x-y|}{t}\right]^{-1}$$

for all $x, y \in X$ and $t \in (0, \infty)$. Then (X, M, *) is a fuzzy metric space. **Remark:** Every metric d(x, y) induces a fuzzy metric M(x, y, t) by the relation $M(x, y, z, t) = \frac{t}{t+d(x, y)}$ such a fuzzy metric is called standard fuzzy metric.

Definition 2.4. Let X be a nonempty set and d be a positive real valued function on $X \times X \times X$ satisfies the following conditions:

(1) For distinct points $x, y \in X$, there exists a point $z \in X$ such that

 $d(x,y,z)\neq 0,$

(2) d(x, y, z) = 0 if at least two of x, y and $z \in X$ are equal,

 $(3)d(x, y, z) = d(x, z, y) = d(y, z, x) \quad \forall x, y, z \in X,$

 $(4)d(x, y, z) \le d(x, y, w) + d(x, w, z) + d(w, y, z) \quad \forall x, y, z, w \in X.$

Then the ordered pair (X, d) is called 2-metric space. *Geometrically*, a 2-metric d(x, y, z) represents the area of a triangle with vertices x, y and z in the Euclidean space.

Example: Let $X = \mathbb{R}^3$ and let d(x, y, z) the area of the triangle spanned by x, y and z, which may be given explicitly by the formula,

 $d(x, y, z) = |x_1(y_2z_3 - y_3z_2) - x_2(y_1z_3 - y_3z_1) + x_3(y_1z_2 - y_2z_1)|$

مجلة التربوي

Common Fixed Point Theorems for Occasionally Weakly Compatible Mappings in Fuzzy 2-Metric Space 12 العدد 12

Where $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$, $z = (z_1, z_2, z_3)$. Then (X, d) is a 2-metric space.

Definition 2.5. An operation $*: [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norm if the following conditions are satisfied: for all $a, b, c, d, e, f \in [0,1]$

(1) * (a, 1, 1) = a, * (0, 0, 0) = 0, (2) * (a, b, c) = * (a, c, b) = * (b, a, c), (3) * (* (a, b, c), d, e) = * (a, * (b, c, d), e) = * (a, b, * (c, d, e)),

(4) $a * b * c \le d * e * f$ whenever $a \le d, b \le e$ and $c \le f$.

Examples of t-norm are a * b * c = abc and $a * b * c = min\{a, b, c\}$.

Definition 2.6. The 3-tuple (X, M, *) is called a fuzzy 2-metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set in $X \times X \times X \times [0, \infty)$ satisfying the following conditions: for all $x, y, z, w \in X$ and $t_1, t_2, t_3 > 0$

(1) M(x, y, z, 0) = 0,

(2) M(x, y, z, t) = 1 for all t > 0 if and only if at least two of the three points are equal,

- (3) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t) for all t > 0, (Symmetry about first three variables)
- (4) $M(x, y, z, t_1 + t_2 + t_3) \ge M(x, y, w, t_1) * M(x, w, z, t_2) * M(w, y, z, t_3),$ (*This corresponds to tetrahedron inequality in 2-metric space*)

(5) $M(x, y, z, \cdot): [0, \infty) \rightarrow [0,1]$ is left continuous.

Note that, The function value M(x, y, z, t) may be interpreted as the probability that the area of triangle formed by the three points x, y, z is less than t.

Example: Let (X, d) be 2-metric space. For all $x, y, z \in X$ and t > 0 define

$$M(x, y, z, t) = \frac{t}{t + d(x, y, z)}$$

Then (X, M, *) is a fuzzy 2-metric space. Such a fuzzy 2-metric space is known as induced fuzzy 2-metric space.

Lemma 2.7. Let (X, M, *) be a fuzzy 2-metric space. Then M(x, y, z, .) is nondecreasing function for all $x, y, z \in X$.

Definition 2.8. A sequence $\{x_n\}$ in a fuzzy 2-metric space (X, M, *) is said to converge to x in X if and only if $\lim_{n \to \infty} M(x_n, x, z, t) = 1 \quad \forall z \in X$ and t > 0.

مجلة التربوي

Common Fixed Point Theorems for Occasionally Weakly Compatible Mappings in Fuzzy 2-Metric Space 12 العدد 12

Definition 2.9. Let (X, M, *) be a fuzzy 2-metric space. A sequence $\{x_n\}$ in X is called a Cauchy sequence if and only if $\lim_{n \to \infty} M(x_{n+m}, x_n, z, t) = 1 \quad \forall z \in$

 $X, m \in \mathbb{N}$, and t > 0.

Definition 2.10. A fuzzy 2-metric space (X, M, *) is said to be complete if and only if every Cauchy sequence in X is convergent in X.

Definition 2.11. Let X be a nonempty set. An element $x \in X$ is called a common fixed point of mappings $F: X \to X$ and $T: X \to X$ if x = T(x) = F(x).

Definition 2.12. Let X be a nonempty set. The mappings $F: X \to X$ and $T: X \to X$ are called commutative if T(F(x)) = F(T(x)) for all $x \in X$.

Definition 2.13. Let X be a set, F and T be self-mappings of X. A point x in X is called a coincidence point of F and T if and only if F(x) = T(x). We shall call w = F(x) = T(x) a point of coincidence of F and T.

Definition 2.14. A pair of mappings *F* and *T* is called weakly compatible pair if they commute at coincidence points.

Definition 2.15. Two self-mappings F and T of a set X are occasionally weakly compatible if and only if there is a point x in X that is a coincidence point of F and T at which F and T commute.

Lemma 2.16. Let X be a set, F and T be occasionally weakly compatible selfmaps of X. If F and T have a unique point of coincidence, w = F(x) = T(x), then w is the unique common fixed point of F and T.

Lemma 2.17. Let (X, M, *) be a fuzzy 2-metric space. If there exists $k \in (0,1)$ such that $M(x, y, z, kt) \ge M(x, y, z, t)$ for all $x, y, z \in X$ and t > 0, then x = y.

3. Main Results

We have the following theorems.

Theorem 3.1. Let (X, M, *) be a complete fuzzy 2-metric space and let S, T, A, B, P and Q be six self-mappings of X. Let the pairs $\{S, AB\}$ and $\{T, PQ\}$ be occasionally weakly compatible and suppose that

AB = BA, AS = SA, BS = SB, TP = PT, PQ = QP and TQ = QT. If there exists $k \in (0, 1)$ such that

$$M(Sx, Ty, z, kt) \geq \min \begin{cases} M(ABx, PQy, z, t), M(Sx, ABx, z, t), \\ M(Ty, PQy, z, t) \end{cases}$$
(1)

for all $x, y, z \in X$ and for all t > 0, then there is a unique common fixed point of *S*, *T*, *A*, *B*, *P* and *Q*.

Proof. Since the pairs $\{S, AB\}$ and $\{T, PQ\}$ are occasionally weakly compatible, so there are points $x, y \in X$ such that

Sx = ABx; SABx = ABSx and Ty = PQy; TPQy = PQTy. We claim that Sx = Ty. If $Sx \neq Ty$, then there exists a positive real number t such that M(Sx, Ty, z, t) < 1. By inequality (1) we obtain

$$M(Sx, Ty, z, kt) \ge \min \begin{cases} M(Sx, Ty, z, t), M(Sx, Sx, z, t), \\ M(Ty, Ty, z, t) \end{cases} \\ = \min\{M(Sx, Ty, z, t), 1, 1\} \\ = M(Sx, Ty, z, t). \end{cases}$$

Therefore Sx = Ty, so we have Sx = ABx = Ty = PQy. Suppose that there is another point u such that Su = ABu then by inequality (1) we have Su = ABu = Ty = PQy, so Sx = Su = w and w = Sx = ABx is the unique point of coincidence of S and AB. By Lemma 2.16 w is the unique common fixed point of S and AB. Similarly, there is a unique point $r \in X$ such that r = Tr = PQr.

Now assume that $w \neq r$. So we have

M(w, r, z, kt) = M(Sw, Tr, z, kt)

$$\geq \min\{M(ABw, PQr, z, t), M(Sw, ABw, z, t), M(Tr, PQr, z, t)\}$$

= min{ $M(w, r, z, t), M(w, w, z, t), M(r, r, z, t)$ }
= min{ $M(w, r, z, t), 1, 1$ } = $M(w, r, z, t)$.

Therefore we have r = w, by Lemma 2.16 *w* is a common fixed point of *S*, *T*, *AB* and *PQ*.

Putting
$$x = Aw$$
 and $y = w$ in inequality (1) we get

$$M(SAw, Tw, z, kt) \ge \min \begin{cases} M(ABAw, PQw, z, t), M(SAw, ABAw, z, t), \\ M(Tw, PQw, z, t) \end{cases}$$

$$M(ASw, Tw, z, kt) \ge \min \begin{cases} M(AABw, PQw, z, t), M(ASw, AABw, z, t), \\ M(Tw, PQw, z, t) \end{cases}$$

$$M(Aw, w, z, kt) \ge \min \begin{cases} M(Aw, w, z, t), M(Aw, Aw, z, t), \\ M(w, w, z, t) \end{cases}$$

$$= \min\{M(Aw, w, z, t), 1, 1\} = M(Aw, w, z, t)$$
implies that $Aw = w$. Next, put $x = Bw$ and $y = w$ we obtain

$$M(SBw, Tw, z, kt) \ge \min \begin{cases} M(ABBw, PQw, z, t), M(SBw, ABBw, z, t), \\ M(Tw, PQw, z, t) \end{cases}$$

$$M(BSw, Tw, z, kt) \ge \min \begin{cases} M(BABw, PQw, z, t), M(BSw, BABw, z, t), \\ M(Tw, PQw, z, t) \end{cases}$$

$$M(Sw, w, z, kt) \ge \min \begin{cases} M(Bw, w, z, t), M(Bw, Bw, z, t), \\ M(w, w, z, t) \end{cases}$$

$$= \min\{M(Bw, w, z, t), 1, 1\} = M(Bw, w, z, t)$$
therefore $Bw = w$. By putting $x = w$ and $y = Pw$ we get
$$M(Sw, TPw, z, kt) \ge \min \begin{cases} M(ABw, PQPw, z, t), M(Sw, ABw, z, t), \\ M(TPw, PQPw, z, t) \end{cases}$$

$$M(Sw, PTw, z, kt) \ge \min \begin{cases} M(ABw, PPQw, z, t), M(Sw, ABw, z, t), \\ M(PTw, PPQw, z, t) \end{cases}$$

$$M(w, Pw, z, kt) \ge \min \begin{cases} M(Ww, Pw, z, t), M(Ww, w, z, t), \\ M(Pw, Pw, z, t) \end{cases}$$

$$= \min\{M(w, Pw, z, t), 1, 1\} = M(w, Pw, z, t)$$
thus $Pw = w$. Next, put $x = w$ and $y = Qw$ we have
$$M(Sw, TQw, z, kt) \ge \min \begin{cases} M(ABw, PQQw, z, t), M(Sw, ABw, z, t), \\ M(Pw, PQW, z, t) \end{cases}$$

$$M(Sw, QTw, z, kt) \ge \min \begin{cases} M(ABw, PQQw, z, t), M(Sw, ABw, z, t), \\ M(TQw, PQQw, z, t) \end{cases}$$

$$M(Sw, QTw, z, kt) \ge \min \begin{cases} M(ABw, QPQw, z, t), M(Sw, ABw, z, t), \\ M(QTw, QPQw, z, t) \end{cases}$$

$$M(w, Qw, z, kt) \ge \min \begin{cases} M(w, Qw, z, t), M(Sw, ABw, z, t), \\ M(QTw, QPQw, z, t) \end{cases}$$

hence Qw = w. From the previse procedure we have

$$Sw = Tw = Aw = Bw = Pw = Qw = w.$$

Therefore, w is a common fixed point of S, T, A, B, P and Q. The uniqueness of the common fixed point holds from inequality (1).

Theorem 3.2. Let (X, M, *) be a complete fuzzy 2-metric space and let S, T, A, B, P and Q be six self-mappings of X. Let the pairs $\{S, AB\}$ and $\{T, PQ\}$ be occasionally weakly compatible and suppose that

AB = BA, AS = SA, BS = SB, TP = PT, PQ = QP and TQ = QT. If there exists $k \in (0, 1)$ such that

$$M(Sx,Ty,z,kt) \ge \varphi\left(\min\left\{\begin{array}{c}M(ABx,PQy,z,t),M(Sx,ABx,z,t),\\M(Ty,PQy,z,t)\end{array}\right\}\right)$$
(2)

for all $x, y, z \in X, t > 0$ and $\varphi: [0, 1] \to [0, 1]$ such that $\varphi(h) > h$ for all 0 < h < 1, then there exists a unique common fixed point of *S*, *T*, *A*, *B*, *P* and *Q*. *Proof.* The proof follows from Theorem 3.1.

Theorem 3.3. Let (X, M, *) be a complete fuzzy 2-metric space and let S, T, A, B, P and Q be six self-mappings of X. Let the pairs $\{S, AB\}$ and $\{T, PQ\}$ be occasionally weakly compatible and suppose that

AB = BA, AS = SA, BS = SB, TP = PT, PQ = QP and TQ = QT.

Common Fixed Point Theorems for Occasionally Weakly	Compatible
Mappings in Fuzzy 2-Metric Space	العدد 12

If there exists $k \in (0, 1)$ such that

M(Sx,Ty,z,kt)

 $\geq \varphi \Big(M(ABx, PQy, z, t), M(Sx, ABx, z, t), M(Ty, PQy, z, t) \Big)$ (3)

for all $x, y, z \in X, t > 0$ and $\varphi: [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ such that $\varphi(h, 1, 1) > h$ for all 0 < h < 1, then there exists a unique common fixed point of *S*, *T*, *A*, *B*, *P* and *Q*.

Proof. Since the pairs $\{S, AB\}$ and $\{T, PQ\}$ are occasionally weakly compatible, there are points $x, y \in X$ such that Sx = ABx and Ty = PQy. We claim that Sx = Ty. By inequality (3) we have

$$\begin{split} M(Sx,Ty,z,kt) &\geq \varphi(M(ABx,PQy,z,t),M(Sx,ABx,z,t),M(Ty,PQy,z,t)) \\ &= \varphi(M(Sx,Ty,z,t),M(Sx,Sx,z,t),M(Ty,Ty,z,t)) \\ &= \varphi(M(Sx,Ty,z,t),1,1) \\ &> M(Sx,Ty,z,t) \end{split}$$

Therefore Sx = Ty, so we have Sx = ABx = Ty = PQy. Suppose that there is another point $u \in X$ such that Su = ABu then by inequality (3) we have Su = ABu = Ty = PQy, so Sx = Su = w and w = Sx = ABx is the unique point of coincidence of *S* and *AB*. By Lemma 2.16 *w* is the unique common fixed point of *S* and *AB*. Similarly, there is a unique point $r \in X$ such that r =Tr = PQr.

Now assume that $w \neq r$. So we have

$$M(w,r,z,kt) = M(Sw,Tr,z,kt)$$

$$\geq$$

$$\varphi(M(ABw,PQr,z,t), M(Sw,ABw,z,t), M(Tr,PQr,z,t))$$

$$= \varphi(M(w,r,z,t), M(w,w,z,t), M(r,r,z,t))$$

$$= \varphi(M(w,r,z,t), 1,1) > M(w,r,z,t)$$

Therefore we have r = w, by Lemma 2.16 *w* is a common fixed point of *S*, *T*, *AB* and *PQ*.

Putting
$$x = Aw$$
 and $y = w$ in inequality (3) we get

$$M(SAw, Tw, z, kt)$$

$$\geq \varphi(M(ABAw, PQw, z, t), M(SAw, ABAw, z, t), M(Tw, PQw, z, t))$$

$$M(ASw, Tw, z, kt)$$

$$\geq \varphi(M(AABw, PQw, z, t), M(ASw, AABw, z, t), M(Tw, PQw, z, t))$$

$$M(Aw, w, z, kt) \geq \varphi(M(Aw, w, z, t), M(Aw, Aw, z, t), M(w, w, z, t))$$

$$= \varphi(M(Aw, w, z, t), 1, 1) > M(Aw, w, z, t)$$
implies that $Aw = w$. Next, put $x = Bw$ and $y = w$ we obtain

M(Sx, Sy, z, kt)

$$\geq \alpha M(ABx, ABy, z, t) + \beta \min \begin{cases} M(ABx, ABy, z, t), \\ M(Sx, ABx, z, t), \\ M(Sy, ABy, z, t) \end{cases}$$
(4)

مجلة التربوي

Common Fixed Point Theorems for Occasionally Weakly Compatible Mappings in Fuzzy 2-Metric Space 12 العدد 12

for all $x, y, z \in X$ and t > 0, where $\alpha, \beta > 0, \alpha + \beta > 1$. Then *S*, *A* and *B* have a unique common fixed point.

Proof. Since the pair $\{S, AB\}$ is occasionally weakly compatible, so there is a point $x \in X$ such that Sx = ABx. Suppose that there exist another point $y \in X$ for which Sy = ABy. We claim that Sx = Sy. If $Sx \neq Sy$ then by inequality (4) we have

$$M(Sx, Sy, z, kt) \ge \alpha M(ABx, ABy, z, t) + \beta \min \begin{cases} M(ABx, ABy, z, t), \\ M(Sx, ABx, z, t), \\ M(Sy, ABy, z, t) \end{cases}$$
$$= \alpha M(Sx, Sy, z, t) + \beta \min \begin{cases} M(Sx, Sy, z, t), \\ M(Sx, Sx, z, t), \\ M(Sy, Sy, z, t) \end{cases}$$
$$= (\alpha M(Sx, Sy, z, t) + \beta \min\{M(Sx, Sy, z, t), 1, 1\})$$
$$= (\alpha + \beta) M(Sx, Sy, z, t)$$

which is contradiction, since $(\alpha + \beta) > 1$, therefore Sx = Sy, so Sx = ABx = Sy = ABy. Suppose that there is another point $u \in X$ such that Su = Sy then by inequality (4) we have Su = ABu = Sy = ABy, so Sx = Su = w and w = Sx = ABx is the unique point of coincidence of S and AB. By Lemma 2.16, S and AB have a unique fixed point, which is w.

Putting x = Aw and y = w in inequality (4) we get

M(SAw, Sw, z, kt)

$$\geq \alpha M(ABAw, ABw, z, t) + \beta \min \begin{cases} M(ABAw, ABw, z, t), \\ M(SAw, ABAw, z, t), \\ M(Sw, ABw, z, t), \\ M(Sw, ABw, z, t) \end{cases}$$
$$\geq \alpha M(AABw, ABw, z, t) + \beta \min \begin{cases} M(AABw, ABw, z, t), \\ M(ASw, AABw, z, t), \\ M(Sw, ABw, z, t), \\ M(Sw, ABw, z, t), \\ M(Sw, ABw, z, t) \end{cases}$$
$$= \alpha M(Aw, w, z, t) + \beta \min \begin{cases} M(Aw, w, z, t), \\ M(A$$

implies that Aw = w. Now, put x = Bw and y = w we obtain

M(SBw, Sw, z, kt)
$\geq \alpha M(ABBw, ABw, z, t) + \beta \min \begin{cases} M(ABBw, ABw, z, t), \\ M(SBw, ABBw, z, t), \\ M(Sw, ABw, z, t) \end{cases}$
M(BSw, Sw, z, kt)
$\geq \alpha M(BABw, ABw, z, t) + \beta \min \begin{cases} M(BABw, ABw, z, t), \\ M(BSw, BABw, z, t), \\ M(Sw, ABw, z, t) \end{cases}$
$M(Bw, w, z, kt) \ge \alpha M(Bw, w, z, t) + \beta \min \begin{cases} M(Bw, w, z, t), \\ M(Bw, Bw, z, t), \\ M(w, w, z, t) \end{cases}$
$= \alpha M(Bw, w, z, t) + \beta \min\{M(Bw, w, z, t), 1, 1\}$
$= (\alpha + \beta)M(Bw, w, z, t)$
Thus $Bw = w$. From the previse procedure we have
Sw = Aw = Bw = w.

Therefore, w is a common fixed point of S, A and B. The uniqueness of the common fixed point holds from inequality (4).

References

[1] A. George, P. Veeramani, On some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, 64(1994), 395-399.

[2] G. S. Sao, Fixed Point Theorem of Type (P) in Fuzzy 2-Metric Space, *International Journal of Innovative Studies in Sciences and Engineering Technology*, 2(2), (2016), 6-7.

[3] G. Jungck & B. E. Rhoades, *Fixed Point Theorems for Occasionally Weakly compatible Mappings*, Fixed Point Theory, 7 (2006), 287-296.

[4] G. Jungck & B. E. Rhoades, *Fixed points for set valued functions without continuity*, Indian J. Pure Appl. Math., 29(1998), No. 3, 227-238.

[5] I. Kramosil & J. Michleck, *Fuzzy metric and statistical metric spaces*, Kybernetika, 11 (1975), 336-344.

[6] J. S. Patel, Some fixed point theorems for Occasionally Weakly compatible Mapping in fuzzy 2-metric space, *ijrst.org.* 1(1), (2016). 1-85.

[7] K. Namdeo, S. S. Rajput & R. Shrivastava, Fixed point theorem for fuzzy 2-metric spaces, *nternational Journal of Theoretical & Applied Sciences*, 2(2), (2010), 16-18.

[8] L. A. Zadeh, Fuzzy sets, *Information and Computation*, 8 (1965), 338-353.
[9] M. A. Khan & Sumitra, Common fixed point theorems for occasionally weakly compatible maps in fuzzy metric spaces, *Far East J. Math. Sci.*, 41(2), (2010). 285-293.

[10] M. A. Al-Thagafi & N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, *Acta Math. Sinica*, 24(5), (2008). 867-876.

[11] P. S. Rao1 & V. Kulkarni, A Common Fixed Point Theorem For Occasionally Weakly Compatible Mappings In Fuzzy Metric Spaces With The (Clr)-Property, *Advances in Fuzzy Mathematics*. 1(11), (2016), 13-24.

[12] S. Gähler, 2-metricsche Räume und ihre topologische strukture, *Math. Nachr.* 26 (1963), 115-148.

[13] S. Paul & S. Chetia, Extensions of some fixed point results in fuzzy 2metric spaces, *International Journal of Engineering Science and Computing*, 6(3), (2016), 2917-2919.

[14] S. Paul & N. R. Das, Banach's and Kannan's fixed point results in fuzzy 2-metric spaces, *Proyecciones Journal of Mathematics*, 4(32), (2013), 359-375.

[15] S.S. Chauhan & K. Utreja, A Common Fixed Point Theorem in Fuzzy 2-Metric Space, *Int. J. Contemp. Math. Sciences*, 8, (2013), 85 – 91.

[16] S. S. Chauhan & K. Utreja, Fixed Point Theorem In Fuzzy-2 Metric Space Using Absorbing Maps, *Research Journal of Pure Algebra*, 2(2), (2012), 77-81

[17] S. Kumar, Common Fixed Point Theorem In Fuzzy 2-Metric Spaces, Universitatea Din BacăU Studii ȘI CercetăRi ȘTiințIfice, 18, (2008), 111 – 116.

[18] S.T. Patel, P.J.Bhatt & A. B. Patel, Fixed Point Theorems in Random Fuzzy 2 and 3 Metric Space through Rational Expression for Integral type, *International Journal of Modern Science and Engineering Technology*, 2(8), (2015), 30-43.

[19] S. Chauhan & S. Kumar, *Fixed points of occasionally weakly compatible mappings in fuzzy metric spaces*, Scientia Magna. 7 (2), (2011), 22-31.

مجلة التربوي

|--|

الفهرس

	ـــــرس	الفه	
الصفحة	اسم الباحث	عنوان البحث	ر .ت
5	أ. مختار عبدالسلام أبوراس	"تحفة الأنام بتوريث ذوي الأرحام" دراسةً وتحقيقاً	1
39	د. عبدالله محمد الجعكي د. محمد سالم العابر	الاستفهام ودلالاته في شعر خليفة التليسي	2
49	د. بشير أحمد المِّيري	قراءة في التراث النقدي عند العرب حتى أواخر القرن الرابع الهجري	3
72	د ₋ مصطفى رجب الخمري	الكناية في النظم القرآني (نماذج مختارة)	4
101	أ. امباركة مفتاح التومي أ. عبير إسماعيل الرفاعي	حذف حرف النداء "يا" من اسم الإشارة واسم الجنس واختلاف النحاة في ذلك	5
114	أ. آمنة عمر البصري	(أيِّ) الموصولة بين البناء والإعراب	6
131	د. حسن السنوسي محمد الشريف	موج النحــــــــــــــــــــــــــــــــــــ	7
151	 أ. سالم مصطفى الديب أ. أحمد سالم الأرقع 	تقنية المعلومات ودورها في تنمية الموارد البشرية بجامعة المرقب	8
176	 أ. عبدالله معتوق محمد الأحول أ. فاروق مصطفى ابوراوي 	دراسة الحل لمنظومة المعادلات التفاضلية الخطية باستخدام تحويل الزاكي	9
188	د. آمنة محمد العكاشي د. صالحة التومي الدروقي د. حواء بشير أبوسطاش	أساليب مواجهة ضغوط الحياة اليومية لدى طالبات كلية التربية	10
210	د. جمال منصور بن زيد أ. تهاني عمر الفورتية	برنامج علاج معرفي سلوكي مقترح لخفض مستوى القلق لدى عينة من المراهقات	11
230	د. میلاد امحمد عریشه	هجرة الكفاءات الليبية إلى الخارج	12
250	د. الهادي عبدالسلام عليوان د. الصادق محمود عبدالصادق	صيد الأسماك في منطقة الخمس وآثاره الاقتصادية	13

مجلة التربوي

العدد 2	· · · · · · · · · · · · · · · · · · ·		س
,		I	س
267	Rabia O. Eshkourfu Layla B. Dufani Hanan S. Abosdil	Determination of (ascorbic acid) in Vitamin C Tablets by Redox Titration	14
274	Hawa Imhemed Ali Alsadi	Physical and Chemical Properties Analysis of Flax Seed Oil (FSO) for Industrial Applications	15
284	Osama A. Sharif Ahmad M. Dabah	Catalytic Cracking of Heavy Gas Oil (HGO) Fraction over H-Beta, H-ZSM5 and Mordinite Catalysts	16
288	Elhadi Abduallah Hadia Omar Sulaiman Belhaj Rajab Emhemmed Abujnah	Monitoring the concentration (Contamination)of Mercury and cadmium in Canned Tuna Fish in Khoms, Libyan Market	17
321	أ. ليلى منصور عطية الغويج د. زهرة بشير الطرابلسي	EFFECT CURCUMIN PLANT ON LIVER OF RATS TREATED WITH TRICHLOROETHYLENE	18
329	Mohamed M. Abubaera	Comparative study of AODV, DSR, GRP, TORA AND OLSR routing techniques in open space long distance simulation using Opnet	19
344	A.S. Deeb Entesar Omar Alarabi A.O.El-Refaie	Solution of some problems of linear plane elasticity in doubly-connected regions by the method of boundary integrals	20
368	Amal Abdulsalam Shamila Soad Muftah Abdurahman Fatma Mustafa Omiman	Common Fixed-Point Theorems for Occasionally Weakly Compatible Mappings in Fuzzy 2- Metric Space	21
379	Somia M. Amsheri	THE STARLIKENESS AND CONVEXITY OF P- VALENT FUNCTIONS INVOLVING CERTAIN FRACTIONAL DERIVATIVE OPERATOR	22

		<u> </u>	*	
ىدد 12	حأا			رس
	391	Ismail Alhadi Aldeb Abdualaziz Ibrahim Lawej	Utilizing Project-Based Approach in Teaching English through Information Technology and Network Support	23
	415	Foad Ashur Elbakay Khairi Alarbi Zaglom	An Acoustic Study of Voice Onset Time in Libyan Arabic	24
	432	س	الفهر	25

مجلة التربوي

ضوابط النشر

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research.

2- The research articles or manuscripts should be original, and have not been published previously. Materials that are currently being considered by another journal, or is a part of scientific dissertation are requested not to be submitted.

3- The research articles should be approved by a linguistic reviewer.

4- All research articles in the journal undergo rigorous peer review based on initial editor screening.

5- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.

2- The research articles undergo to the policy of the editorial board regarding the priority of publication.

3- The published articles represent only the authors' viewpoints.