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Abstract
In this paper, we introduce the concept of fuzzy complex
valued metric space by using the notion of complex fuzzy set,
moreover, we define the topology induced by this space and some
related results of them. In order to illustrate our results we equip
the paper with some examples. Also, we state and prove the fuzzy
complex valued Banach contraction theorem.
Keywords: Complex valued metric space, fuzzy metric space,
complex fuzzy set, fuzzy complex valued metric space, fuzzy
complex valued contractive mapping.

1. Introduction

The concept of fuzzy set was first introduced by Zadeh
(1965) with his pioneering paper and since then there has been
tremendous interest in the subject due to its diverse applications in
wide range of scientific areas. In particular, Kramosil and Michalek
(1975) introduced the notion of fuzzy metric space and compared
this notion with the notion of statistical metric space, that was
initially proposed by Schweizer and Sklar (1960). Later on, George
and Veeramani (1994) gave a stronger form of metric fuzziness. On
the other hand, Ramot et al. (2003) extended the fuzzy set to
complex fuzzy set. A complex fuzzy set S is characterized by a
membership function pg(x) = ;. (x)e™s%) where i = v—1, 5 (x)
and wg(x) are both real valued and 7 (x) € [0,1], which ranges the
interval [0.,1] to the unit disc in the plane. Subsequently, Azam et
al. (2011) introduced the concept of complex valued metric space,
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which generalized the classical metric space, and established some
fixed point results for mappings satisfying a rational inequality.

In this paper, we introduce the concept of fuzzy complex
valued metric space by using the notion of complex fuzzy set,
which is a generalization of the corresponding concept of fuzzy
metric space that proposed by George and Veeramani (1994) such
that we range the interval [0.1] to the unit disc in the plane.
Further, we give the topology induced by this space as well as we
give some properties about this topology such as Hausdorffness
and first countability. Finally, we state and prove the fuzzy
complex valued Banach contraction theorem.

2. Preliminaries

In what follows in this section, we recall some notations and
definitions that will be utilized in our subsequent discussion.
Definition 2.1. Let © be the set of complex numbers and
z4.Z, € €, Define a partial order = on C as follows: z; = z, if and
only if Re(z;) =< Re(z, ; Im(z,) =< Im(z,). Consequently, one
can infer that z; = z, if one of the following conditions is satisfied:
(i) Re(z,) = Re(z,),Im(z,) < Im(z,),

(i) Re(z,) < Re(z,),Im(z,) = Im(z,),

(iii) Re(z,) < Re(z,),Im(z,) < Im(z,),

(iv) Re(z,) = Re(z,),Im(z,) = Im(z,).

In particular, we write z, % z,, if z; # z, and one of (i), (ii), and
(ini) is satisfied and we write z; < z, if only (iii) is satisfied. Notice
that 03 z,% z, = lz4] < |z,], moreover
Zy D2, T, X Z3=2, < Z,.

Definition 2.2. Let X be any nonempty set, whereas C is the set of
complex numbers, suppose that the mapping d : X XX —
satisfies the following conditions:

1- 0= d(x,v), forall x,y € X and d(x,v) =0 iffx = y,

2- dix,yv) =d(yv,x)forall x,v € X,

3- d(x,y) =d(x,z) +d(z,v) forall x, v,z € X.
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Then d is called a complex valued metric on X, and (X, d) is called
a complex valued metric space.

Definition 2.3. Let (X,d) be a complex valued metric space and
(x,,) be a sequence in X and x € X. Then,

i) (x,) is said to be convergent to x if for every ¢ € C with ¢ = 0
there is n, € M suchthat d(x,,x) < ¢ for all n = n,. We denote
this by lim,, . x, =x,0orx, — xasn — 0.

ii) (x,) is said to be a Cauchy sequence if for every ¢ € T with
¢ = 0 there is ny € M such that for all n = ngy, d(x,, x,.m) <¢
where m € N,

iii) (X, d) is said to be a complete complex valued metric space if
every Cauchy sequence is convergent.

Lemma 2.4. Let (X,d) be a complex valued metric space and let
(x,,) be a sequence in X. Then

i) (x,.) converges to x if and only if |d(x,,x)| — 0asn — oo,

i) (x,.) is a Cauchy sequence if and only if |d(x,,%,+m )| — 0 as
n—ow,meHN.

i) For ¢€C with ¢>=0 and =x€X, define
B(x,c)={veX:d(x,v) <c} and the family
B ={B(x,c):x € X,c € Cwith c = 0}, then

T, ={ACX: VxEA3B(xc)Ef,x EB(x,c) A}

Is a topology on X.

Definition 2.5. A binary operation *: [0,1] x [0,1] — [0,1] is a
continuous t-norm if * satisfies the following conditions:

1) = is associative and commutative,

2) * is continuous,

3)a=1=aforall a € [0,1],

4) a*b <c+=dwhenevera =candb =d ,h ab,cde [01]
Definition 2.6. A 3-tuple (X,M,=) is said to be a fuzzy metric
space if X is an arbitrary set, = is a continuous t-norm and M is a
fuzzy set on X* x (0,c0) satisfying the following conditions:

1) M(x,y,t) =0,
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2) M(x,y,t) = 1iffx =y,
3) M(x,y,t) = M(y,x,t),
4) M(x,y,t) =M(y,z,5) < M(x,z,t +5),
5) M(x,v,.) : (0,00) — [0,1] is continuous,
forall x,v,z €Xandt,s = 0.
Definition 2.7. Let (X,M,=) be a fuzzy metric space, x € X and
(x,,) be a sequence in X. Then,
i) (x,) is said to be convergent to x if for any t = 0 and any
r € (0,1) there exists a natural number m, such that
M(x,,x,t)>1—r for all n=n;. We denote this by
lim, . x, =xo0orx, —»xasn — o0,
i) (x,) is said to be a Cauchy sequence if for any » € (0,1) and
any t>=0 there exists a natural number ny; such that
M(x,,x.,t) =1—rforall n,m = n,.
iii) (X,M,=) is said to be a complete fuzzy metric space if every
Cauchy sequence is convergent.
Remark 2.8. Let (X, M,=) be a fuzzy metric space. then
t=fAcX:x €A ifandonlyif,3t >=0and r

€ (0,1) such that B(x,r,t) — A}
Is a topology on X.
Definition 2.9. A binary operation defined as
®: {alaeClal <1} x{blbeC,|b| <1}

— {d|d € C, |d| < 1}
is a continuous phase intersection if = satisfies the following
conditions:
1) & is associative and commutative,
2) (® is continuous,
3) iflbl=1,thenla ®b|=lal forallaeC: |a] <1,
4) la@b|l <lc®d|l whenever lal =lc|] and |[b] < |d],
a,b,c,dEf{ze C: |z| < 1},
Remark 2.10. Since Azam et al. (2011) defined a partial order =
on the complex numbers C, so that, in the above definition we can
replace conditions 3, 4 respectively by the following
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3. if |[b]l =1, thena & b = a for all a in the unit disc of the plane,
4, a®b =2 c@® dwhenevera =cand b = dforall a,b,c and d
in the unit disc of the plane.

Example 2.11. a ® b = ab

Example 2.12. a &) b = min{a, b}

Remark 2.13. For any 7 =% we can find r3 such that
1, &1y £ 1 and for any . we can find r; such that iz Gy = 1,
whereas 7y,75,73, 7y and r; are positive complex numbers that
belong to the open unit disc in the plane. In addition, for each
rp, Z 0 and r, £ 0, there exists an element » Z 0 such that r = n
and r = .

3. Fuzzy complex valued metric spaces

In this section, we define the concept of fuzzy complex valued
metric space and the topology induced by this space with some
properties.

Definition 3.1. A 3-tuple (X, M,®) is said to be fuzzy complex
valued metric space if X is an arbitrary set, ¢ ={c EC:¢c = 0}, ®
IS a continuous phase intersection and M is a complex fuzzy set on
X?* x @ satisfying the following conditions:

forall x,y,z € Xand t,s,e™ € Q we have

FCVM1) M(x,v,t) > 0,

FCVM2) M(x,y,t) = e™iffx =y,

FCVM3) M(x,v,t) = M(y, x,t),

FCVM4) M(x,y,t) ® M(y,z,5) S M(x,z,t +5),

FCVM5) M(x,y,): @ = {c €C: |c| < 1}is continuous.

Since R = €, so that, if we take @ = [0,@) and a & b = ab
then every fuzzy metric space is a fuzzy complex valued metric
space.

Example 3.2. Let X=R, a(® b =ab and
M:X*xQ—={ceC:|c| < 1}defined by

| -1 .
M(x,y,t) = (e!* /) " forall x,y € X, t € Q. Then (X, M,®@) is
a fuzzy complex valued metric space.
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Conditions FCVML, 2, 3 are obvious. To prove FCVM4 we know
that

t+ t+
Ix — 2| -::s( t5)|x—y|+( E)|y—z|

5

l.e.
|l —z]  le—vl |yv— 2z
= +
t+s=s t 5
Therefore,

x—z| x—yl ly-=zl

et+s g t @ s
Thus M(x,v,t) ® M(y,z,5) = M(x,z,t +s5). Now FCVM5, if
we define two mappings 7, f as follows n: @ = @, n(t) =t and
f:Q—=f{cet:|c| =1} f(s) = [Zel"‘_}'lfj')_l, then
M(x,y,):Q—=f{ceC:|cl =1} can be considered as
composition of n and f. Since n and f are continuous, also M is
continuous. Hence (X, M,®) is a fuzzy complex valued metric
space.
Remark 3.3. In the above example we can replace & by any
nonempty set X and |x — | by a metric d(x,y) defined on X.
Furthermore, if we replace the phase intersection in the same
example by a ® b = min(a, b), the example holds.
Example 3.4. Let X = M, a ® b = ab and
M:X*xQ—{c€C: |c| < 1]} defined by

_(x/y if x=y
M(x,y,t) _{}fo if v<x
forevery x,v E X and t € @. It is easily seen that (X, M,®) is a

fuzzy complex valued metric space.

Throughout this paper we consider e™ € @, where @ has
mentioned in definition 3.1.

Lemma 3.5. The mapping M(x, v, ) : @ = {c €C: [c| = 1}is
nondecreasing for all x, v € X,

Proof. Suppose that M(x,y,t) = M(x,y,s) for
s =t > Owhereas 5, t € @. Since s > t implies that s — ¢ > 0, By
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this supposing and FCVM4 we have
M(x,v,t) ®M(v,v,s—t) 2 M(x,v,5) < M(x,vy,t)
M(x,v,t) ® M(y,v,s —t) = M(x,vy,5) < M(x,y,t).
Since M(y,y,s—t)=e™, so by FCVM2 we obtain that
M(x,v,t) < M(x,v,t), which is contradiction.
Definition 3.6. Let (X, M,®) be a fuzzy complex valued metric
space and t € @. The open ball B(x,r,t) with center x and radius
r = 0such that |r| < 1 is defined as follows
B(x,r,t) = {}r EX:M(x,yt)=e™ —T}.
Remark 3.7. Let »,t € @ whereas Ir| < 1. In a fuzzy complex
valued metric space (X, M,®) we can find a complex number tg,
where 0 <t, <t, such that M(x,v,t,) =e™ —r whenever
M(x,y,t) =e™ —rforanyx,y €X.
Lemma 3.8. Every open ball is an open set.
Proof. Consider an open ball B(x,r,t) and let ¥ € B(x,r,t), then
M(x,y,t) =e™ —r. So from remark 3.7 we can find t, €C
whereas 0 < t, <t such that M(x,y,t,) > e™ —r. Suppose that
M(x,v,t,) =1y, since m, =e™ —r, we can find a complex
number s > 0 with |sl < 1 such that 7y = e™ — s =™ —r, By
remark 2.13 we have for a given r, and s such that i, = e™ — s
there exists r, in Q@ whereas |ry| < 1 such that r, ® 7, Z e™ — s,
Now consider the ball B(y,e™ —n,t—t,) and let
zZE B[}r, e™ —r,t— tc,} implies that
M(y,z,t —ty) =1.
Therefore,
M(x,z,t) Z M(x,y,t;) @ M(y, z,,t — t)
ZnEn e —s=e" —r
It is easily seen that z € B(x,r,t), hence
Ei‘[:}r,ei“' -1y, t— tc,) c B(x,r,t).
Theorem 3.9. Let (X, M,®) be a fuzzy complex valued metric
space. Define
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Trey =1AC X :x € Aif and only if 3r,t € Q with |r| <
1 such that B(x,r,t) S A}

then ¢, is a topology on X.

Proof. 1. Since there is no x € @ such that B(x,r,t) & @, thus
@ € 1., Since for any x€X, re @; |r[<1 and any t € @,
B(x,r,t) € X then X € Trep.

2. Let A,B €1, and x € AN B, that means x € 4 and x € F, so
there exist ty,t, €0Q, and 7,7 € Q; I | < 1,|r] < 1 such that
B(x,7,t;) © A, B(x,n,t,) © B, By remark 2.13 we have that,
for any t;, t; € @ there exists t € @ such that t <t,, t <t,. So
that, If we take r = min{r,nJ, then
B(x,r,t) € B(x,ny,t;) NEB(x,m,t,) CANB. ThusANB € Tiew.
3. Let 4, € 7, foreach @ €I and x € U,; 4,. Then there exists
ay € I such that x € A, , so there exist t, ¥ € @; |r| < 1 such that
B(x,mt) C 4, . Since A, © Uzep Azimplies that
B(x,7,t) © Uy A,, thus Uy A, €14, Therefore ., is a
topology on X.

Theorem 3.10. If (X,M,®) is a fuzzy complex valued metric
space, then (X, 77, ) is Hausdorff.

Proof. Let x,¥ € X whereas x # ¥. From our definition 3.1 we
have M(x,y,t) is a positive complex value lies in the open unit
disc, that is |M(x,v,t)| <1, suppose that M(x,v,t) =r. From
remark 2.13 we have that, for every 7, > r with |r| < |l <1
there exists n €Q;Inl<1suchthatn ®mn =1y,

Now consider the sets B (x,e"“' — *rl,:E) and B (}r, e™ — 1, 5} we
have to prove that, these two sets are separated, so we assume that
B (x,ef“' — T‘l,%) N B (}r, e™ — T‘l,%) =0
That means, there exists

zE B(x,ei“' —*rl,%) N B(}r,efw — T‘l,%)
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Then,
M (x,z,zi) = et — [:ei“' — T'1) = and
M (}r,z,zi) = e — [:ei“' — T'1) =n
However, from FCVM4 we have
M(x,y.t) £ M(Izi) @ M(}r,z,zf) which implies 7> n, @ ry,
S0 we obtain that r = 1, = r, which is contradiction. Hence
B [:x,ei“' —T‘l,EEJ n B(}r,ei“' —T'l,E) = 0.

-
=

Theorem 3.11. Let (X, M,®) be a fuzzy complex valued metric

space. Then (X, ;) is first countable.

Proof. We will prove that .. = {B (x%i) :n € M} is a local basis

T

forreXandt € @. Let U € 14, and x € U, since U is open, then
there exists = = 0 which lies in the open unit disc together with
t € @ such that B(x,r,t) = U. Pick n € M such that i-::*r and

i{: t, so we have to show that B {x%i) = B(x,r,t). Suppose
that z € B(x%i) then
t ivar 1 ivar
M (x,z,;) = gt —= =™ —r,
We can see that — < ¢, so by lemma 3.5 we have that
. t
e — g = M(x,z,—) = M(x,z,t)
TL

which implies z € B(x,r,t), thus B (x%i) c B(x,r,t) c U,

Therefore, B, is countable local basis for xx. Hence (X,1.,) is
first countable topological space.

Definition 3.12. Let (X, M,®) be a fuzzy complex valued metric
space, x € X and (x,) be a sequence in X. Then (x,) is said to
converge to x if for any t,r € @; |r| < 1 there exists n, € M such
that M(x,,x,t) = e™ —r for every n =mn,. This is denoted by
lim, ,.x, =xo0rx, —xasn — 00,
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Theorem 3.13. Let (X, M,®) be a fuzzy complex valued metric
space, x € X and (x,,) be a sequence in X. (x,,) converges to x if
and only if M(x,,x,t) = e™ asn — o foranyt € Q.

Proof. (=) Suppose that x, — x, then there exists a natural
number m, such that M(x_x,t) =e™ —r for all n=n,,
t,r€Q; Irl <1 which implies e™ —M(x,,x,t) <r. Thus
M(x,,x,t) — e™asn — oo,

(<) suppose that M(x,,x,t) — e™ as n — oo, then there
exists a natural number n, such that e™ — M(x,,x,t) < r for all
n=n,tLreQ; Irl<1, so M(x,xt)=e™—r. Hence
X, —Xxasn — oo,

Definition 3.14. Let (X, M,®) be a fuzzy complex valued metric
space, x € X and (x,,) be a sequence in X. Then (x,,) is said to be a
Cauchy sequence if for any t,r € @; Ir| < 1 there exists n, € N
such that M (x,,x,,, t) = e™ — r for every n,m = n,.
Definition 3.15. A fuzzy complex valued metric space is called
complete if every Cauchy sequence is convergent.
Definition 3. 16. Let (X, M,®) be a fuzzy complex valued metric
space and 4 = X. Then A4 is said to be FCV-bounded if there exists
a complex number reE@Q with I|rl<1 such that
M(x,y,t) =e™ —rforallx,y Edandt € Q.
Theorem 3.17. Every compact subset of a fuzzy complex valued
metric space is closed and FCV-bounded.
Proof. Let (X, M,®) be a fuzzy complex valued metric space, 4 be
a compact subset of X and 7.t €@ whereas |r| < 1. Since
{B(x,7,t): x€ A} is open cover of A, then there exist
Xq,%q, .., %X, €E A such that 4 c U, B(x,»,t). For any x,y € A
there exist 1 = i,/ < n such that x € B(x;,r,t) and v € B(x,,r,t),
therefore we can write

M(x,x,t) = e™ —rand M(x,x,,t) > e™ —r.
Take & = min {M(x,x,,t) : 1 < i,j =n}, S0 we have
M(x,v,3t) & M(x,x,t) & M[xi,x}-, t} ® M[x}-,}r, t}
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= [:EiW —*r) ® a® [:ei“' —*r)

Let £ = 3t and choose a complex number s € @ with |s| =< 1 such
that
[:E'iw —*r) ®a ® [:ei“' —*r) =e™ —3
therefore we have M(x,y,£) = e™ — s for all x,v € 4, hence 4 is
FCV-bounded. On the other hand, we know that X is Hausdorff,
since every compact subset of a Hausdorff space is closed, then A
is closed.
4. Fuzzy complex valued contraction theorem

In this section we will extent the fuzzy Banach contraction
theorem, which was given by Gregori and Sapena (2002), for the
complete fuzzy complex valued metric space.
Definition 4.1. Let (X, M,®) be a fuzzy complex valued metric
space and f : X — X is a self-mapping. Then f is said to be fuzzy
complex valued contractive if there exists k € (0,1) such that

1 . 1 .
MG F 0 - (M(x,:s, 0 )
foreach x,¥ € X and t € @. k is called the contractive constant of
f.
Definition 4.2. Let (X, M,®) be a fuzzy complex valued metric
space and (x,) be a sequence in X. Then (x,,) is said to be fuzzy
complex valued contractive if there exists k € (0,1) such that

1 . 1 .

oW = o bW

M (%21, Xpszs t) erRK (M(In!xn+1! t) ) )
forallt € @,n € M.
Theorem 4.3. (Fuzzy complex valued Banach contraction
theorem). Let (X,M,®) be a complete fuzzy complex valued
metric space in which fuzzy complex valued contractive sequence
are Cauchy. Let T : X — X be a fuzzy complex valued contractive
mapping with contractive constant k. Then T has a unique fixed
point.
Proof. Fix x € X and let x,, = T™(x), n € N, For t € @, we have
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1 fw = k( 1 Ew)
M(T(),T2(),0 M0
and by induction
1 i = k( 1 iiw)
— & — &
M(Xp41: Xpsart) M (X X410 1)

Then (x,) is a fuzzy contractive sequence, by assumptions it is a
Cauchy sequence and (x,) converges to v, for some v € X. By
theorem 3.13. as = — 0 we have

. _giw (;_
NI e M, 0
Then for each t >0 and lim,_._ M(T(y),T(x).t) =™ we
have lim, .. T(x,)=T(y), that is, lim, . _x ., =T(y) and
T(y)=y.
Now to show the uniqueness assume that T'(z) = z for some z € X.

For t = 0, we have
1 . 1

LW

M(y,zt) = MTO).TE0
-:_;k(—l _)
M(y,z,t)

=« (T ")

1 .
5k:( _ m‘)
MOz

:-::---:ak”(

eiw) — 0

W

M(y, zt) © )_}D
asn — oo, Hence M(x,v,t) =e™ and y = z.
Conclusion

in this paper, we defined the notion of fuzzy complex
valued metric space which is a generalization of fuzzy metric
spaces and then the topology induced by this space. Also, we gave
some topological properties, such as Hausdorfness and first
countability. After that, the complex valued version of fuzzy
Banach contraction theorem was stated and proved. So With the
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help of these results one can study other fixed point theorems,
similar topological properties of this space and problems related to
convergence of a sequence.
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