-

كايةالتربةالنس
جامعة المرقب

العدد الرابع
يناير 2014م

هيئة التحرير

> د/ صئلح هيئة الأتخرير

أعضاء هيئة التحرير

1 - د ـ ـ ميلود عمـار النفر
2 - 2 ـ ـ ع عبد اله محمد الجعكي
3 - أ ـ ـ سالم حسين المدهون
4 - 4 أ . سـالم مفتاح الأشهب

استشارات فنية وتصميم الغلاف ـ أ/ حسين ميلاد أبو شعلة

مجلة التربوي

العدد 4

بحوث العدد

- الشباب ومشكلات المجتمع " الأسباب وسبل مواجهتها" . . رؤية إلى العامل النحوي من خلال المعنى - العملية التنريسية بين الطرائق والاستراتيجيات . القراءات التنفيرية
- الأسس واللوغرنيمات وخواصها الأساسية وطرق تققيمها وعرضها وتدريسها لغير المتخصصين
- اللققديم والتأخير بين عناصر الجملة ودوافعه الدلالية .
. مشكلات التربية العملية بالجامعة الأسمرية الإسلامية
- نقوبم مستوى أداء الطالب المعلم ببعض أقسام التربية البدنبة بجامعتي
- المرقب والجبل الغربي
- اختلاف النحاة في "حاشا" التتزيهية بين الاسمية والفعلية "استعراض . المذاهب وأدلتها"
- الأثر الدلالي للحذف في نماذج من شعر الفزاني .

الأحكام الاجتهادية وعلاقتها بالمقاصد الشرعية"دراسة أصولية'

> - من وجوه التوسع في العربية "عرضا ونتبعا"

العدد 4

- أثر اختلاف مطالع القمر في بدء الصيام والإفطار - جماليات البنية الإيقاعية في القرآن الكريم "دراسة في الجزء الأخير من . سورة مريم"
- الفكر الوسواسي والسلوك القهري" المفهوم - الأنواع - أساليب العلاج" .
- Financial Disclosure in the annual reports of Libyan Banks from Users' perspectives .
- Investigating grammatical mistakes in liyan learners' written discourse in al mergeeb university
- Teaching pre- service teachers critical reading through the newspapers .
- Using blogs in English language teaching and teacher education programs

مجلة النربوي

الافتتاحية

مع إطلالة العدد الرابع من مجلتكم الناشئة "مجلة التربوي" نجدد العهد مع قراء الدجلة الكرام بأن تكون دوما ملنزمة بنشر الجديد والمفيد والهادف من الأبحاث العلمية التنربوية إيمانا منها بأن كلية النتربية عبر منبرها المتمتل في مجلتها "التربوي" تعتبر قلعة ومنارة يشع نورها في ربوع بلادنا الحبياة . إن أعضاء هيئة التحرير بالمجلة ، وأسرة تدريس كلية التربية الخمس نتوجه بالثكر الجزيل لكل من أسهم ويسهم في مساعدة المجلة في تحقيق الههف المنشود، وبخاصة الأساتذة الفضلاء الذين اسنقطعوا من وقتهم الثمين لقراءة البحوث فأفادوا الباحثين والمجلة بملحوظاتهم القيمة، التي تثري البحث، وترفع من قيمة المجلة في الأوساط العلمية . ونحن إذ نسير في هذا الارب يحدونا الأمل بأن نكون من الذين أسهموا في خلق الإنسان المؤمن والمربي الفاضل المتمسك بقيم الدين والأخلاق الكريمة . هيئة التحربر

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

د. عادل بشبر بادي
أستاذ مساعد - قسم الرياضيات بكلية العلوم \جامعة مصراتة
email: adbabadi@yahoo.com
ملخص
هذا البحث هو دراسة للاوال الأسية واللوغارتمية تعتمد على خواص الأعداد والدوال ومبادئ التحليل الرياضي مثل نهايات المتتاليات ونهايات الدوال. كذلك سنقوم بإثبات خواصها بما في ذلك مشتقاتها بدون استخدام الأساليب الرياضية المتقدمة كالنكامل المحدد والمتسلسلات اللانهائية. المناقشة والعرض باستخدام هذه المفاهيم الأولية ليست مطروحة في مصادر التحليل الحقيقي والتفاضل والنكامل المتقندم المعروفة.

مقدمة

للاوال الأسية واللوغارتمية أهمية بالغة في دراسة الرياضيات وفي التطبيقات. ففي الرياضيات تعتبر هذه الدوال من أهم أمثلة الدوال غير الجبرية وهي تلحب دوراً أساسياً في دراسة أغلب فروع الرياضيات كالمعادلات النفاضلية بسبب الخواص التي تتميز بها. أما في الناحية التطبيقية فإننا نسوق مثال سلوك الدوال الأسية الذي يمثل ظاهرة النمو الأسي التي تظهر في دراسة تكاثر المخلوقات الأولية في الأحباء وكذلك التحلل الأسي الذي يظهر في الاضمحلال

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تنقيمها وعرضها وتدريسها لغير / العدد 4

الإشعاعي في الكيمياء. وهناك العديد من النطبيقات الأخرى التي لا تحصى ولا تعد لهذه الدوال في كل مجالات العلوم التطبيقية، وفي الكثير من العوم الإنسانية تاريخياً، لم يكن الهذف من وراء وضع اللوغارتمات والأسس هو التطبيقات. لقد كان المقصود منها هو إيجاد طرق جديدة لتسهيل إجراء العمليات الحسابية التي يصعب إجراؤها بشكل يدوي كالضرب والقسمة وخاصة عندما يكون عدد الخانات الصحيحة والعشرية كبير . لقد طور الرياضي الاسكتلندي جون نابير اللوغارتمات لتسهيل إجراء العمليات الحسابية بتحوبل عملية الضرب إلى جمع ، وشرح طريقته في كتاب نشره سنة 1614. ولقد بقيت طريقة نابير هي الطريقة الأساسية المعتمدة في إجراء الحسابات منذ ذلل الوقت إلى أن ظهرت الآلات الحاسبة اليدوية في الربع الأخير من القرن العشرين. على الرغم من أن تعريف اللالة الأسية عند القيم الكسرية واضح ولا صعوبة في دراستها على مجموعة الأعداد القياسية ، ولكن ذللك لا يكفي للوصول إلى إثبات خواص هذه الدوال والدوال العكسية لها وهي الدوال اللوغارتمية. والسبب في ذلك أن دراسة خواص هذه الدوال ومشتقاتها على مجموعة الأعداد الحقيقية تحتاج إلى أدوات تحليلية تختلف عن الأساليب الجبرية المألوفة لدى غالبية الطلاب وهذه الأدوات التحليلية لا ندرس عادة للمستويات الأولية. في غالبية المصادر يُعرَّف اللوغارتم الطبيعي للعدد الموجب x على أنه العدد $\cdot \ln x=\int_{1}^{x} \frac{d t}{t}$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تنقيمها وعرضها وتندريها لغير / العدد 4

ويتم اشتقاق خواص اللوغارتم الطبيعي من هذه العلاقة باستثناء الخاصية结 $x^{r}=r \ln x$ يتم تعريفه بعد ذلك باستخدام الدالة الأسية \exp التي بدورها تعرف على أنها الدالة العكسية للالة اللوغارتمية. وبناءً على ذلك يتم تعريف ${ }^{\text {(}}$ بالعلاقة التالية:

$$
x^{r}=\exp (r \ln x)
$$

وباستخدام الدالتين ln اللوغارتمية لأي أساس موجب ودراسة خواصها.
هذا الأسلوب في تعريف هذه الدوال متبع في أغلب مصادر التحليل الحقيقي والتفاضل والنكامل المنقّام [انظر المراجع 1، 2، 5، 6، 7، 12]. هذه الطريقة تعطي تطبيقا متمبزا للنكامل المحدود ، ومثال مدناز للأسلوب الموضوعي في عرض التعريفات والمبرهنات. ولكن هذا الأمر يجعل دراسة الدوال اللوغارنمية والأسبة عملية منقدمة ومنوقفة على استخدام أداة تحليلية منطورة إذا ما قارنَّاها بالمبادئ الأساسية للأعداد الحقيقية والدوال، الأداة المقصودة هنا هي التكامل المحدد. هناك أساليب أخرى لتعريف الدوال الأسية واللوغارتمية، بعض المصادر تستخدم متسلسلات القوى لتعريف الدوال الأسية واللوغارتمبة، [انظر :

هناك استراتيجيات متباينة لتدريس الدوال الأسية واللوغارتمية في سياق مقررات التفاضل والنكامل لطلاب المراحل الدنيا، البعض يستخدم النكامل المحدد لتعريف اللوغارنم ومنه يستتتج بقية الخواص [انظر المصادر 3، 9، 10]. هذا

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تقديمها وعرضها وتدريسها لغير / العدد 4

الخيار له ثمنه ؛ لأن عرض هذه المواضيع سيتأخر إلى ما بعد دراسة النكامل المحدد ، كما أنه سيتم التخلي عن فكرة أن الأسس واللوغارتمات هي الامتداد الطبيعي للقوى الصحيحة للأعداد ولجذور الأعداد الموجبة. يعرض الكثير الموضوع انطلاقاً من القوى الصحيحة والجذور ويعرفون الدالة الأسية على أنها استكمال للأسس المقتصرة فقط على الأعداد القياسية وبعد ذلك تعرف الدالة اللوغارتمية على أنها الدالة العكسية للاالة الأسية كما في المصدرين [4، 11]. وبالرغم من أن هذه المقاربة لدراسة الأسس واللوغارتمات متبعة في هذين المصدرين والكثير غيرها إلا أننا لم نجد في مصادر التحليل الحقيقي والتفاضل والنكامل المنققم المنوفرة لدينا اشتقاقاً رياضياً دقيقاً لها لا يعتمد على النكامل المحدد أو المتسلسلات اللانهائية. ولهذا وضعنا هذه الورقة لتوضيح هذه التفاصيل ولنققدم البراهين اللازمة التي لا تعتمد على أي أداة سوى المبادئ الأساسية للأعداد والدوال.

من خلال عرض الموضوع والتعريفات والبراهين سنقوم بوضع بعض الأفكار بين يدي الباحثين والمدرسين والمهتمين بالرياضيات التي تلقي الضوء على الخواص الأساسية التي تتميز بها الأسس واللوغارتمات، وعلى بعض مبادئ وأساليب التحليل الرياضي التي تطبق في دراسة الرياضبات بشكل عام. بواسطة هذه الخواص سنتكون فكرة لدى القارئ حول هذا النوع من الدوال وكيفية عرض هذه المواضيع المتعلقة بها وتدريسها للطلاب المتبدئين ولغير المتخصصين.

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تنقيمها وعرضها وتندريها لغير / العدد 4

كذلك فإن المناقشة المعروضة في هذه البحث نوضح أهية طرق البرهنة التي تدرس عادة في مبادئ التحليل الحقيقي والتفاضل والنكامل المنقدم. في هذه الورقة سنبدأ بتققديم التفاصبل التحليلية لتعريف الأسس على أنها الامتداد للقوى الصحيحة والجذور ، ثم نعرف الدالة الأسية لأي أساس باستخدام نهايات المتتاليات. بعد ذلك نقام برهاناً رياضياً دقيقاً لوجود النهاية

$$
\lim _{t \rightarrow 0} \frac{a^{t}-1}{t}
$$

باستخدام الخواص الأساسبة للأعداد والدوال والنهايات. وسنستخدم هذه النهاية لحساب مشتقة الدالة الأسية وسنستخدمها كذلك لتعريف اللوغارتم الطبيعي واشتقاق كل خصائصه. ومنها نستتتج علاقة ذلك بدالة اللوغارتم الطبيعي والدالة الأسية واللوغارتمية لأساس اختياري.

الأسس والدوال الأسية
ليكن a أي عدد حقيقي. لأي عدد صحيح موجب n نعرِّف العدد التالي

$$
. a^{n}=\frac{\varepsilon_{n}}{a \cdot a \cdot \cdots a}
$$

 بالأس. إذا كان

$$
. a^{n}=\left(a^{-n}\right)^{-1}=\left(\frac{\sqrt{1} \cdot|n|}{a \cdot a \cdot \cdots a}\right)^{-1}=\frac{1 \cdot|n|}{a^{-1} \cdot a^{-1} \cdots a^{-1}}
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

المقدار |n| يرمز للقيمة المطلقة للعدد n. يمكن بسهولة إقناع الطالب المبتدئ وغير المتخصصين بأن الأس الصحيح للعدد الموجب يحقق الخواص النالية: خواص القوى الصحيحة للأعداد الموجبة
ليكن a, b عددين موجبين و \square_{2} عددين صحيحين. . $a=b=b a^{n}=b^{n}$
$. a^{n+m}=a^{n} a^{m}(2$
$. a^{n m}=\left(a^{n}\right)^{m}(3$
$. a^{n} b^{n}=(a b)^{n}(4$
. $a^{n}>a^{m}$ (5

(7) ليكن

$$
\text { . } a^{n}>b^{n} \text { فإن } n<0
$$

يككن إثبات هذه الخواص رياضياً باستخدام مبادئ الجبر وأساليب البرهان الأساسية كالاستقراء.

الجذور
 . $f(a)=a^{m}<a<1=f(1)$ من مبرهنة القيمة 0 . 0 . 0 . 1

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نققيمها وعرضها وتندريها لغير / العدد 4

المنوسطة المعروفة يوجد عدد حقيقي $\quad a<b<1$ بحيث أن 1 و $. b^{m}=f(b)=a$
كذللك إذا كان

$$
. b^{m}=f(b)=a
$$

 الجذور من كل الرتب للأعداد الموجبة وهذا يعد تطبيقاً جيداً لمبرهنة القيمة المتوسطة.

من المعلوم أن العدد الموجب له جذر سالب من الرتب الزوجية بالإضافة إلى الجذر الوحبد الموجب وكذللك الأعداد السالبة لها جذور سالبة من الرتب الفردية ولكننا في سياق دراسة الدوال الأسية واللوغارنمات لا نهتم بالجذور اللسالبة وسندرس فقط خواص الجذور الموجبة للأعداد الموجبة. الجذور تتمتع بالخواص

$$
\begin{array}{r}
. b=a^{\frac{1}{m}} \Leftrightarrow b^{m}=a(1 \\
\cdot a^{\frac{1}{m n}}=\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}}(2
\end{array}
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تققيمها وعرضها وتدريسها لغير / العدد 4

$$
\begin{gathered}
\left(a^{\frac{1}{m}}\right)^{n}=\left(a^{n}\right)^{\frac{1}{m}}(3 \\
\cdot a^{\frac{1}{n}} b^{\frac{1}{n}}=(a b)^{\frac{1}{n}}
\end{gathered}
$$

5) إذا كان $n, a>1$ عدد صحيح، فإن n. $a^{\frac{1}{n}}>1$

ليكن a عدد حقيقي موجب. الآن لأي عدد قياسي q يمكننا تعريف العدد a بالعلاقة

$$
a^{q}=\left(a^{\frac{1}{m}}\right)^{m}
$$

حيث لبيان أن خلط لأن قيمته وحيدة ولا نتوقف على صورة كسرية معينة وهذا مثال للمفهوم الرياضي الذي يسمى بالتعريف الجيد. يمكن باستخدام خواص القوى الصحيحة وخواص الجذور أن نثبت الخواص النالية:
خواص القوى القياسية للأعداد الموجبة
ليكن u, b عددين موجبين و p, q عددين قياسيين.

$$
a^{p+a}=a^{p} a^{q}
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

$$
\begin{align*}
& \text {. } a^{p q}=\left(a^{p}\right)^{q} \\
& . a^{q} b^{q}=(a b)^{q} \\
& \text {. } a^{q}>a^{p} \text { ليكن } 1 \text { (} 4 \\
& \text { (5 }
\end{align*}
$$

(6) ليكن

$$
\text { فإن } a^{q}>b^{q}
$$

نلاحظ أن تعريف العدد a، حيث هِ عدد قياسي، واشتقاق خواصه يعتمد
فقط على الخواص الجبرية للأعداد. ولكن خواص الأعداد الجبرية لوحدها لا تكفي لتعريف العدد ${ }^{x}$ عندما يكون x عدد حقيقي اختياري. نحتاج إلى النمهيد النالي لوضع تعريف قيمة العدد الموجب المرفوع لأس حقيقي اختياري.

تمهيا 1: إذا كان a عدد موجب (1) عد

$$
\cdot \frac{a-1}{m a}<a^{\frac{1}{m}}-1<\frac{a-1}{m}
$$

 . $|\boldsymbol{q}|<1$ الأي عدد قياسي $1\left|a^{q}-1\right| \leq K_{a}|q|$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتندريسها لغير / العدد 4

البرهان:
 $. k=0,1, \ldots, m-1$
بضرب $\quad a^{\frac{1}{m}}-1$ نجد 1 المنتباينة . $m\left(a^{\frac{1}{m}}-1\right)<a-1<m a\left(a^{\frac{1}{m}}-1\right)$ الدطلوب.
(2) نفرض أولاً أن $a>1, q=\frac{n}{m}>0, n<0$. $a>1$ فما برهان (1) نستخدم المنطابقة التالية كان $a^{\frac{1}{m}}-1$ نجد $a^{\text {أن }}$ فض $\sum_{k=0}^{n-1} a^{\frac{k}{m}}<n a^{\frac{n}{m}}$ ($\left.a_{n}^{a^{n}}-1<n a^{\frac{n}{m}}\left(a^{\frac{1}{n}}-1\right)\right)_{n}$ $a^{n} a^{n}-1<\frac{n}{m}(a-1) a^{n}$
(1) $a^{q}-1<q(a-1) a^{q}<q(a-1) a$

إذا فرضنا الآن أن العدد القياسي q يحقق الشرط . $a^{-q}-1<-q(a-1) a^{-q} 0<-q<1$ بالضرب في ${ }^{\text {ب }}$ نجد أن

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4
(2) $1-a^{q}<-q(a-1)$

باستخدام المتباينتين (1) , (2) نجد أن
(3) $\left|\square^{a}-1\right|<|q|(a-1) a$
. $|q|<1, a>1$ حيث
الآن إذا كان 1

$$
\begin{aligned}
& .1-u^{2} \leqslant q\left(u^{-1}-1\right)=u^{-2}-1<q\left(u^{-1}-1\right) u^{-2} \\
& \text { وبشكل مشابه عندما } a<1,-1<q<0 \text { نجد أن } \\
& a^{q}-1<-q\left(a^{-1}-1\right) a^{q}<-q\left(a^{-1}-1\right) a^{-1}
\end{aligned}
$$

باستخدام المتباينتين الأخيرتين نجد أن
(3) $\left|a^{q}-1\right|<|q|\left(a^{-1}-1\right) a^{-1}$. $|q|<1, a \leqslant 1$ عندما $K_{a}=\max \left((a-1) a_{3}\left(a^{-1}-1\right) a^{-1}\right)$ لأي عدد موجب a نقوم بوضع
 ليكن $a>0$. لأي عدد حقيقي a نختار متتالية متزايدة من الأعداد القياسية ($\left.a^{q_{n}}\right)_{n \geq 1}\left(q_{n}\right)_{m \geq 1}$ (متزايدة إذا كان $a>1$ ومتتاقصة إذا كان $a<a<1$) 0 من الخواص الأساسية للمتتاليات نجد أن منتالية

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

العدد L. لبيان ذلك نلاحظ أن $\lim _{n}\left(q_{n}-p_{n}\right)=0$ من المتباينة في الفقرة

لأي عدد n كبير بشكل كافٍ ليكون 1 ع 1 $\left|q_{n}-p_{n}\right|$ وبذلك فإن , $\lim _{n} a^{p_{n}}=\lim _{n} a^{q_{n}}=L$ ومذا $\lim _{n} a^{\alpha_{n}-p_{n}}=1$ النهاية هي نفسها لأي متتالية أعداد قياسية فإننا نعرف العدد

$$
a^{x}=L=\lim _{n} a^{q_{n}}
$$

حيث لبيان أن الأسس الاختيارية تحقق القوانين المذكورة أعلاه بعد إعادة صياغة هذه القوانين باستبدال كلمة "قياسي" بكلمة "حقيقي". خواص القوى الحقيقية للأعداد الموجبة ليكن a, b عددين موجبين و x, y عددين حقيقين.

$$
a^{x+y}=a^{x} a^{y}
$$

$$
a^{x y}=\left(a^{x}\right)^{y}
$$

$$
a^{x} b^{x}=(a b)^{x}
$$

$$
\text { 4) ليكن } 4>a^{y} \text {. إذا كان } a^{x}>x>y>a^{y} . a>3
$$

5 ليكن

$$
\begin{aligned}
& \text { (2) من التمهيد } 1 \text { نجد أن } \\
& \left|a^{q_{n}-p_{n}}-1\right| \leq K_{a}\left|q_{n}-p_{n}\right|
\end{aligned}
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تققيمها وعرضها وتدريسها لغير / العدد 4

6 (6 ليكن

$$
\text { فإن } a^{x}>b^{x} .
$$

فإن
, $a>1$
كان
7) إذا
$. \lim _{x \rightarrow+\infty} a^{x}=+\infty, \lim _{x \rightarrow-\infty} a^{x}=0$
فإن
كان
8) إذا

$$
. \lim _{x \rightarrow+\infty} a^{x}=0, \lim _{x \rightarrow-\infty} a^{x}=+\infty
$$

الآن يمكنا تعريف الدوال الأسية العامة. ليكن a>0 a. الدالة الأسية العامة هي

$$
\text { الدالة) } E_{a}(x)=c^{x}: \mathbb{R} \rightarrow(0,+\infty) \text { والتي تعرف بالعلاقة }
$$

مبرهنة 2: الدالة الأسية العامة Ea مستمرة وإذا كان 1 مإ 1 فإنها تكون تقابلية.

البرهان: الاستمرارية واضحة إذا كان u لأن الدالة ستكون ثابتة. نفرض أن
 إذا كان . الصفر

إذا عرفنا العددين $L_{+} L_{\text {ب }}$ خواص النهايات أن العلاقتين التاليتين متحققتين

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تققيمها وعرضها وتدريسها لغير / العدد 4

$$
\begin{gathered}
L_{+}=\lim _{n} E_{a}\binom{1}{n}=\lim _{n} a^{\frac{1}{n}}=a^{0}=1=E_{a}(0) \\
. L_{-}=\lim _{n} E_{a}\left(-\frac{1}{n}\right)=\lim _{n} a^{-\frac{1}{n}}=a^{0}=1=E_{n}(0)
\end{gathered}
$$

وبذلك فإن الدالة المذكررة أعلاه بيان أنها مستمرة عند أي عدد حقيقي . من خواص الأسس كذلك نلاحظ أن الدالة E أحادية. ومن مبرهنة القيمة المتوسطة نجد أنها فوقية. وبذلك فإنها دالة نقابلية.
部 E_{a}^{-1} : الدالة $\left.\mathrm{E}_{\mathrm{a}}^{-1}+\infty\right) \rightarrow \mathrm{R}$

$$
\text { فإن } y-\log _{a} x \Leftrightarrow x-E_{a}(y)-w^{y} \quad \text {. }
$$

2) اللوغارتمات ومشتقة الدوال الأسية

$$
\begin{array}{r}
\text { ليكن } a \text { عدد موجب. نعرف الدالة } \quad l_{a}: R \backslash(0) \rightarrow R_{v} \quad l_{a}(t)=\frac{a^{t}-1}{t}
\end{array}
$$

$$
\begin{aligned}
& \text { بحيث أن } \\
& . l_{a}\left(m_{1}\right)<l_{a}\left(m_{2}\right)
\end{aligned}
$$

البرهان: ليكن 0 = m. بإجراء بعض الحسابات الجبرية نجد أن

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

$$
\begin{aligned}
l_{a}(m+1)-l_{a}(m) & =\frac{m a^{m}(a-1)-\left(a^{m}-1\right)}{m(m+1)} \\
& =\frac{(a-1) \sum_{j=0}^{m-1} a^{m}-(a-1) \sum_{j=0}^{m-1} a^{j}}{m(m+1)} \\
& =\frac{(a-1) \sum_{j=0}^{m-1} a^{j}\left(a^{m-j}-1\right)}{m(m+1)}
\end{aligned}
$$

و لاحظ أننا استخدمنا العلاقتين ${ }^{\text {الحن }}$ في المساواة الثانية. $m a^{m n}=\sum_{j=0}^{m-1} a^{m}$

$$
h_{a}(m+1)-h_{a}(m)=\frac{(a-1) \sum_{j=0}^{m-1} a^{j}\left((a-1) \sum_{i=0}^{m-j-1} a^{i}\right)}{m(m+1)}
$$

$$
=\frac{(a-1)^{2} \sum_{j=0}^{m-1} \sum_{i=0}^{m-j-1} a^{i+j}}{m(m+1)}
$$

في هذه المرة استخدمنا العلاقة

واضح أن المقدار $\quad \sum_{j=0}^{m-1} \sum_{i=0}^{m-j-1} a^{i+j}$ موجب وبذلك敦 $.0<m_{1}<m_{2}$
الآن إذا كان أن العلاقة

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير ／العدد 4

بسهولة بيان أن المتباينة $a-1$＜$a-1$（ $a^{-1}-1$ متحققة إذا كد

$$
\text { موجب بحيث أن } 1
$$

وإن ． $\mathscr{\ell}_{a}\left(m_{1}\right) \leq \ell_{a}(-1)<\ell_{a}(1) \leq \ell_{a}\left(m_{2}\right)$ تمهيد 4：الدالة البرهان：إذا كان يمكننا كتابة هذين العددين على الصورة $n>0$ ح $q_{1}=\frac{m_{1}}{n}, q_{2}=\frac{m_{2}}{n}$ و艮

$$
. l_{a}\left(q_{1}\right)=n l_{a} 1 / n\left(m_{1}\right)<n l_{a} 1 / n\left(m_{2}\right)=l_{a}\left(q_{2}\right)
$$

لاحظ أن الدالة غير صفريين و
据 $\left.\mid \ell_{1}\right) \left.\quad \ell_{a}\left(x_{1}\right)\left|<\frac{z}{2}\right| \ell_{a}\left(q_{2}\right) \quad \ell_{a}\left(x_{2}\right) \right\rvert\,<\frac{z}{2}$

$$
\begin{array}{r}
-s<-s+l_{a}\left(q_{2}\right)-l_{a}\left(q_{1}\right)<l_{a}\left(x_{2}\right)-l_{a}\left(x_{1}\right) \\
. \ell_{a}\left(x_{2}\right) \geq \ell_{a}\left(x_{1}\right) \text { وبار أن اختياري } \quad \text { إن }
\end{array}
$$

$$
\text { مبرهنة 5: النهاية } a>0 \text { > } 0 \text { م } \lim _{t \rightarrow 0} \ell_{a}(t) \text { عودوة لأي }
$$

البرهان：حسب التمهيد السابق فإن الدالة الجانبين $\lim _{t \rightarrow 0^{ \pm} \ell_{a}(t)}$ موجودنان ．لاحظ䇉 $(t)=a^{t} \ell_{a}(-t)$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نققيمها وعرضها وتندريها لغير / العدد 4

$$
\begin{aligned}
& \text { - } \lim _{t \rightarrow 0^{-}} l_{a}(t)=\lim _{t \rightarrow 0^{-}} a^{t} l_{a}(-t)=\lim _{x \rightarrow 0^{+}} a^{-t} l_{a}(t)=\lim _{t \rightarrow 0^{+}} l_{a}(t) \\
& \text { وبذلك فإن النهاية } \\
& \text { الآن نعرف الدالة } \ln (0,+\infty) \rightarrow \text { بالعلاقة } \\
& . \ln (x)=\lim _{t \rightarrow 0} l_{x}(t)=\lim _{t \rightarrow 0} \frac{x^{t}-1}{t}
\end{aligned}
$$

لاحظ أن هذه الدالة جيدة التعريف لأن النهاية枋 كذلك أن هذه النهاية لها استخدام مباشر وهو حساب مشتقة الدالة الأسية كما نوضح المبرهنة النالية.
 للاشتقاق لأي 0 > 0 ومشتقتتها هي

$$
E_{a}^{\prime}(x)=\left(\alpha^{x}\right)^{\prime}=a^{x} \ln \alpha
$$

البرهان: نحسب النهاية $\begin{aligned} \lim _{t \rightarrow 0} \frac{E_{a}(x+t)-E_{a}(x)}{t} & =\lim _{t \rightarrow 0} \frac{a^{x+t}-a^{x}}{t}=\lim _{t \rightarrow 0} \frac{a^{x} a^{t}-a^{x}}{h} \\ & =a^{x} \lim _{t \rightarrow 0} \frac{a^{t}-1}{t}=a^{x} \lim _{t \rightarrow 0} l_{a}(t)=a^{x} \ln a\end{aligned}$ وبذلك فإن من المؤكد أن غالبية القراء يعرفون أن الرمز ln \ln مخصص لدالة اللوغارتم الطبيعي، ولكنـنا هنا لن نستخدم أي خاصية معروفة مسبقاً للوغارتم

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

الطبيعي وسنستخدم فقط التعريفات التي ذكرناها في هذه الورقة والنتائج التي أثبتتاها لبرهنة كل الخصائص الأساسية للاالة اللوغارتمية. مبرهنة 7: لتكن x, $\mathbf{~}$ $. \ln (x \cdot y)=\ln x+\ln y(1$
$. \ln x^{r}=r \ln x(2$
$. x^{-1}(x-1) \leq \ln x \leq x-1(3$

$$
. \lim _{u \rightarrow 0} \frac{\ln (x+1)}{x}=1(4
$$

5) الدالة اللوغارتمية قابلة للاشتقاق ومشتقتها هي
6) الدالة In متزايدة على الفترة (6 (1 (0) وكذلك فإن

$$
. \lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \lim _{x \rightarrow+\infty} \ln x=+\infty
$$

$$
\begin{aligned}
\ln (x \cdot y) & =\lim _{t \rightarrow 0} \frac{(x y)^{t}-1}{t}=\lim _{t \rightarrow 0} \frac{x^{t} y^{t}-y^{t}+y^{t}-1}{t} \\
& -\left(\lim _{t \rightarrow 0} y^{t}\right)\left(\lim _{t \rightarrow 0} \frac{x^{t}-1}{t}\right)+\lim _{t \rightarrow 0} \frac{y^{t}-1}{t} \\
& =1 \cdot \ln x+\ln y=\ln x+\ln y
\end{aligned}
$$

(2) إذا كان 0 (r ، فمن الواضح أن الخاصية متحققة. وإذا كان r ، r فإن

$$
. \ln x^{r}=\lim _{t \rightarrow 0} \frac{\left(x^{r}\right)^{t}-1}{t}=r \lim _{t \rightarrow 0} \frac{x^{r t}-1}{r t}=r \lim _{u \rightarrow 0} \frac{x^{u}-1}{u}=r \ln x
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق تقديمها وعرضها وتندريها لغير / العدد 4
(3) نفرض أولاً أن 1 >> 1 من المتباينة في الفقرة (1) من التمهيد 1 نجد أن

$$
x^{-1}(x-1)<\frac{x^{m^{-1}}-1}{m^{1}}<x-1
$$

حيث m عدد صحيح موجب. من تعريف

$$
1-x \leq-\ln x \leq x^{-2}(1-x) \Leftarrow x\left(x^{-1}-1\right) \leq \ln x^{-1}
$$

$$
\leq x^{-1}-1
$$

بالضرب في 1- نجد أن (1)
برهنّا الفقرة (3).
من الفقرة (3) نجد أن 1 (3)

$$
\begin{equation*}
. \lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}-1 \tag{4}
\end{equation*}
$$

(5) إذا كان x أي عدد موجب، فإن

$$
\lim _{t \rightarrow 0} \frac{\ln (x+t)-\ln x}{t}=\frac{1}{x} \lim _{t \rightarrow 0} \frac{\ln \left(1+\frac{t}{x}\right)}{\frac{t}{x}}=\frac{1}{x} \lim _{u \rightarrow 0} \frac{\ln (u+1)}{u}=\frac{1}{x}
$$

$$
\begin{aligned}
& . \ln x=\lim _{m \rightarrow+\infty} l_{x}\left(m^{-1}\right)=\lim _{m \rightarrow+\infty} \frac{x^{m^{-1}}-1}{m^{-1}} \\
& \text { وبذلك نكون قد بينّا أن } \\
& x^{-1}(x-1) \leq \ln x \leq x-1 \\
& \text { عندما يكون } x>1 \text {. } x \text {. } \\
& \text { إذا كان } 1
\end{aligned}
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نققيمها وعرضها وتندريها لغير / العدد 4

هذا يضمن أن (6) بما أن مشتقة الدالة ln موجبة، فإنها متزايدة. من الفقرة (4) نجد أن ln $\ln 2^{n}>\frac{\pi}{2}$ دالة غبذلك فإن محدوة. بما أنها متزايدة، فإن $\lim _{x++\infty} \ln x=+\infty$.

$$
. \lim _{x \rightarrow 0^{+}} \ln x=\lim _{y \rightarrow+\infty} \ln y^{-1}=-\lim _{y \rightarrow+\infty} \ln y=-\infty
$$

 عددين موجبين و $\ln e_{x}=1=\ln e_{y}$ وبما أن $x \neq 1, y \neq 1$. لاحظ $x \neq 1$
居 اللوغارتمات الطبيعية. نعرف الدالة الأسية

$$
\text { فإن } 6
$$

$$
\cdot \exp (\ln x)=e^{\ln x}=\left(x^{1 / \ln x}\right)^{\ln x}=x
$$

واضح أن 1 exp(ln 1$)=1$. وإذا كان x أي عدد حقيقي، فإن

$$
\cdot \ln (\exp (x))=\ln e^{x}=x \ln e=x \cdot 1=x
$$

وبذلك فإن الدالة اللوغارتمية ln \ln الدالة العكسية للدالة الأسية \quad exp. أي أن $\ln =\log _{e}$ وهي الدالة اللوغارنمية للأساس e. باستخدام الفقرة (4) من المبرهنة 7 نجد أن

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

$$
\lim _{n} \ln \left(1 \begin{array}{ll}
1 & 1 \\
n
\end{array}\right)^{n}=\lim _{n} \frac{\ln \left(1+n^{-1}\right)}{n^{-1}}=\lim _{u \rightarrow 0} \frac{\ln (1+u)}{u}=1
$$ وباستخدام خواص الدوال الأسية واللوغارتمية نحصل على

$\lim _{n}\left(1+\frac{1}{n}\right)^{n}=\lim _{n} \exp \left(\ln \left(1+\frac{1}{n}\right)^{n}\right)=\exp \left(\lim _{n} \ln \left(1+\frac{1}{n}\right)^{n}\right)$
ومن هذه المساواة نصل إلى هذه النهاية المعروفة

$$
\lim _{n}\left(1+\frac{1}{n}\right)^{n}=\exp (1)=e
$$

$E_{\mathrm{a}}: \mathbb{R} \rightarrow(0,+\infty), E_{\mathrm{a}}(x)=a^{x}$ يمكن التعبير عن الدالة الأسية العامي للأساس الاختياري $a>0$ باستخدام الدالتين $a=\ln$ كما يلي

$$
\cdot E_{a}(x)=\exp \left(\ln \left(E_{a}(x)\right)\right)=\exp \left(\ln a^{x}\right)=\exp (x \ln a)
$$

ومن ذلك فإن $\log _{a} x=\frac{\ln x}{\ln a}$ ومن هذه العلاقات يمكن للقارئ استتتاج كل الخواص الأساسية للوغارتمات. خواص اللوغارتمات
فإن

$$
، a>1
$$

$. \lim _{x \rightarrow+\infty} \log _{a}(x)=+\infty, \lim _{x \rightarrow 0^{+}} \log _{a} x=-\infty$

$$
\begin{aligned}
& \text { لنكن } a \neq 1, b \neq 1 \text {. } a_{p} b, x, y \text { أعداد موجبة } \text {, } a \neq \text {. } \\
& . \log _{a}(x y)=\log _{a} x+\log _{a} y(1 \\
& \text {.r } \log _{a} x^{r}=r \log _{a} x \text { (2 } \\
& \cdot \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}(3 \\
& \text { كان }
\end{aligned}
$$

مجلة التربوي
الأسس واللوغرتيمات وخواصها الأساسية وطرق نتقيمها وعرضها وتدريسها لغير / العدد 4

$$
\text { 5) إذا كان } 1 \text { < } a \text { ، فإن }
$$

$$
. \lim _{x \rightarrow+\infty} \log _{a}(x)=-\infty, \lim _{x \rightarrow 0^{+}} \log _{a} x=+\infty
$$

$$
\begin{aligned}
& . \log _{b} x=\frac{\log _{a x} x}{\log _{a} b}(7 \\
& . \log _{b} a=\frac{1}{\log _{a} b}(8
\end{aligned}
$$

ليكن إذا كان r عدد قياسي، فإنه من المككن دراسة هذه الدالة وحساب $f(x)=x^{r}$ مشتتنها باستخدام الخواص الجبرية للأعداد الحقيقية. المشتقة في هذه الحالة هي
 استخدام الدوال الأسية واللوغارتمية يسهل عملية حساب المشنقة في هذه الحالة. ليكن r عدد غير حقيقي. لاحظ أن $f(x)=e^{r \ln x}$ وبذللك فإن

$$
\cdot f^{\prime}(x)=\frac{r}{x} e^{r \ln x}=\frac{r}{x} x^{r}=r x^{r-1}
$$

مجلة التربوي
\square
الأسس واللوغرتيمات وخواصها الأساسية وطرق نقـيمها وعرضها وتدريسها لغير
/ العدد 4
Apostol, T. M., Calculus, Volume I, $2^{\text {nd }}$ ed., John (1
Wiley \& Sons, Inc., 1967.
Bloch, E. D.,The Real Numbers and Real Analysis, (2Springer Science+Business Media, LLC, 2011.Hass, J, Weir, M. D. and Thomas G. B. Jr.,(3
Thomas'Calculus $12^{\text {nd }}$ ed., Pearson Education,Inc., 2010.
Hass, J, Weir, M. D. and Thomas G. B. Jr., University (4
Calculus: Early Transcendentals $2^{\text {nd }}$ ed., PearsonEducation, Inc., 2012.
Olmsted, J. M. H., Advanced Calculus, Appleton (5
Century Crofts Inc., 1961
Protter, M. H., Basic Elements of Real Analysis, (6
Springer- Verlag New York, Inc. 1998.
Pugh, C. C., Real Mathematical Mnalysis, Springer- (7
Verlag New York, Inc., 2002.

الأسس واللوغرتيمات وخواصها الأساسية وطرق تقديمها وعرضها وتدريسها لغير
/ العدد 4

Rudin, W., Principles of Mathematical Analysis, $3^{\text {rd }}$ ed., McGraw- Hill, Inc., 1976.

Smith R. T. and Minton R. B., Calculus $4^{\text {th }}$ ed., McGraw- Hill, 2008. Stewart, J., Calculus, $7^{e d}$ ed., Brooks/Cole, 2012.(10 Stewart, J., Single Variable Calculus; Early (11 Transcendentals, $7^{e d}$ ed., Brooks/Cole, 2012. Stoll, M, Introduction to Real Analysis, $2^{\text {nd }}$ ed., (12 Addison Wesley Longman, Inc., 2001.

湾

مجلة التربوي

العدد 4

الفهرس

الصفحة	اسم الباحث	عنوان البحث	-
5			1
6	د/ عبد الساح مهنا فريوان	الثباب ومشكلات المجتمع " الأسباب وسبل مواجهتها"	2
49	د/ أحمد عبد السلام ابشيش	المؤاجرة أو الإجارة في الثريعة الإسلامية	3
72	د/ صالح حسين الأخضر	رؤية إلى العامل النحوي من خلال المعنى	4
97	د/ جمعة محمد	العطلية التنريسية بين الطرائق والاستراتيجيات	5
130	أ/ إمحمد علي مفناح	القراءات التفسيرية	6
147	د/ عادل بشير بادي	الأسس واللوغرتيمات وخواصها الأساسية وطرق تققيمها وعرضها وتندريسها لغير المتخصصين	7
171	د/ عبد الهه محد الجعكي	النتقيم والنأخير بين عناصر الجملة ودوافعه الدالالية	8
192	جمال منصور بن زيد	مشكلات التزبية العملية بالجامعة الأسمرية الإسلامية	9
231	د/ عطية المهي أبو الأجراس وآخرون	تنقيم مستوى أداء الطالب المعلم ببعض أقسام التربية البدنية بجامعتي المرقب والجبل الغربي	10

مجلة التربوي

العدد 4			$\frac{\text { ر الفهرس }}{}$
الصفحة	اسم الباحث	عنوان البحث	
263	د/ محمد إمحمد أبو راس	اختلاف النحاة في 'حاشا" التزيزيةية بين الاسمية والفعلية "استعراض المذاهب وأدلتها"	11
285	د/ محمد سالم العابر		12
308	أ/ عائشة محد الغويل	الأحكام الاجتهادية وعلاقتها بالمقاصد الشرعية "دراسة أصولية"	13
332	أ/ حنان علي بالنور	من وجوه التوسع في العربية "عرضا وتتبعا"	14
358	د/ سليمان دصطفى الرطيل	أثر اختلاف مطالع القمر في بدء الصيام والإفطار	15
394	د/ المهي إبراهيم الغويل	جماليات البنية الإيقاعية في القرآن الكريم "دراسة في الجزء الأخير من سورة مريم"	16
411	د/ عبد السلام عمارة إسماعيل	الفكر الوسواسي والسلوك القهري" المفهوم - الأنواع - أساليب العلاج"	17
424	د/ موسى كريبات	Financial Disclosure in the annual reports of Libyan Banks from Users' perspectives	18
454	أ/ رمضان الثلباق	Investigating grammatical mistakes in liyan learners' written discourse in al mergeeb university	19
468	د/ انتصار الشريف وآخرن	Teaching pre- service teachers critical reading through the newspapers	20
479	د/ انتصار الشريف وآخرن	Using blogs in English language teaching and teacher education programs	20
498		الفهرس	21

مجلة التربوي
العدد 4
ضوابط النشر

يشترط في البحوث العلمية المقدمة للنشر أن يراعى فيها ما يأتي : . أصول البحث العلمي وقواعده -

- ألا نكون المادة العلمية قد سبق نشرها أو كانت جزءا من رسالة علمية . - يرفق بالبحث المكتوب باللغة العربية بملخص باللغة الإنجليزية ، والبحث المكتوب بلغة أجنبية مرخصا باللغة العربية
- يرفق بالبحث نزكية لغوية وفق أنموذج معد
- تعدل البحوث المقبولة وتصحح وفق ما يراه المحكمون الـون
- التزام الباحث بالضوابط التي وضعتها المجلة من عدد الصفحات ، ونوع الخط ورقمه ، والفترات الزمنية الممنوحة للعديل ، وما يستجد من ضوابط تضعها

المجلة مستقبلا

تنبيهات :

- للمجلة الحق في تعديل البحث أو طلب تعديله أو رفضه . . يخضع البحث في النشر لأوليات المجلة وسياستها - البحوث المنشورة تعبر عن وجهة نظر أصحابها ، ولا تعبر عن وجهة نظر

مجلة التربوي

العدد 4
 ضوابط النشر

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research. 2- The research articles or manuscripts should be original, and have not been published previously. Materials that are currently being considered by another journal, or is a part of scientific dissertation are requested not to be submitted.
3- The research article written in Arabic should be accompanied by a summary written in English. And the research article written in English should also be accompanied by a summary written in Arabic.
4- The research articles should be approved by a linguistic reviewer.
5- All research articles in the journal undergo rigorous peer review based on initial editor screening.
6- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.
2- The accepted research articles undergo to the policy of the editorial board regarding the priority of publication.
3- The published articles represent only the authors viewpoints.

