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A B S T R A C T  

Denoising of chirp based signals is a challenging problem in signal processing and 
communications.  In this paper, we propose a suitable denoising algorithm based on the 
discrete linear chirp transform (DLCT), which provides local signal decomposition in 
terms of linear chirps. Analytical expression for the optimal filter response is derived. 
The method relies on the ability of the DLCT for providing a sparse representation to a 
wide class of broadband signals like chirp signals. Simulation results show the efficiency 
of the proposed method, especially for mono-component chirp signals. 
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1 Introduction 

Chirp signals, known as linear frequency modulated signals, are important class of 
nonstationary signals which frequently encountered in many practical applications, such as 
radar, sonar, and telecommunications. Noise is the main factor which influences the 
transmission and recognition of signals in communications, radar, sonar and optics. In order 
to reduce the influences caused by noise, several methods and algorithms have been proposed 
for denoising. Unfortunately, most of these algorithms were not efficient for nonstationary 
signals, such as chirp signals, which are characterized with time–frequency identities. In general 
methods or algorithms that are based on frequency domain only are not effective for such 
type of signals [1]. 
To deal with nonstationary signals, several algorithms are presented in the literature of 
denoising chirp based signals. Most of them are based on extending Fourier representations 
capable of providing instantaneous–frequency information for multi–component signals. 
These algorithms can be achieved by considering polynomial–phase transform [2], or second–
order polynomial transforms [3-4]; however, the latter is preferable due to computational 
viability. Furthermore, a parametric characterization of the instantaneous frequency of each 
of the components [5] provides a realistic view of the evolving nature of the signal. Although 
procedures based on the chirplet transform [6–7], and polynomial chirplet transform (PCT) 
[8] have been proposed, their numerical implementation is difficult to obtain because of no 
straightforward way to solve non–convex optimization problems with multiple extrema.    
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In one hand, the fractional Fourier transform (FrFT) proposed by Namias [9] in 1980 has 
drawn a considerable amount of attention in analysing and processing of nonstationary chirp 
based signals. It is a generalization of the conventional Fourier transform. It has been applied 
to different problems in signal processing including signal separation and filtering [10–15]. 
The FrFT provides a continuous representation of a signal from the time to the frequency 
domain at intermediate domains by means of the fractional order of the transform.  On the 
other hand, the DLCT is also an extension of the discrete Fourier transform (DFT) and 
provides a parametric modelling of the instantaneous frequencies of the components. It is 
introduced to represent a signal as a combination of linear chirps [4]. The DLCT is 
implemented efficiently using the fast Fourier transform (FFT) algorithm and can be applied 
for compression of nonstationary signals [16]. Unlike the FrFT in doing joint time–frequency 
representation, the DLCT is a joint chirp–rate frequency transformation, which can do a better 
job in denoising chirp based (nonstationary) signals. It has been shown in [17] that the discrete 
linear chirp transform has better performance than the fractional Fourier transform in terms 
of sparsity, computation time, and peak location. 
In [18], a DLCT denoising algorithm which is used to obtain an estimate for the desired signal 
is proposed.  The algorithm relies on the ability of the DLCT to decompose a signal iteratively 
into its components locally. Each of these components is filtered separately and then 
synthesized with the other filtered components to give the filtered signal. Since each segment 
of the signal has different components with different bandwidths, the filter has to be time–
varying filter. The results show that the DLCT algorithm provides better performance than 
the FrFT algorithm. 
In this paper a novel denoising method based on the discrete linear chirp transform is 
proposed. The designed filter approach uses the minimization criterion between the desired 
signal and the filtered signal to obtain optimal filter coefficients. The presented method shows 
an improvement in the performance compared with the conventional DLCT algorithm given 
in [18] for mono–component chirp signals.  
The rest of the article is organized as follows. Section II presents the discrete linear chirp 
transform. In Section III, the proposed filter design technique is introduced. Simulation results 
are given in Section IV. Conclusions and future work are shown in Section V. 

2 Discrete Linear Chirp Transform 

Consider a discrete time chirp based analytic signal	𝑥(𝑛), where	𝑛 = 0,1, … ,𝑁 − 1 and 𝑁 
is the number of samples embedded in a complex white Gaussian noise		𝜂(0, 𝜎/). Then the 
observation signal 𝑦(𝑛) can be modeled as 

 

𝑦(𝑛) = 𝑥(𝑛) + 𝜂(𝑛)																																																																																																																						(1)                                      

The signal 𝑥(𝑛) can be well estimated using the DLCT [2], which its pairs are given as follows 
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𝑋(𝑘,𝑚) = 5 𝑥(𝑛)	𝑒𝑥𝑝 8−𝑗/:
;
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																																																																											(2)	

  

𝑥(𝑛) =
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<=	>	?@AB	?CD																																																												(3) 

where 𝐶 is the resolution of the transform in the chirp-rate domain and 𝐿 is an even integer 
number as defined in [2]. The DLCT attempts to decompose a signal using discrete linear chirps 
characterized by a discrete frequency		2𝜋𝑘/𝑁, and a chirp–rate		𝛽 = 𝐶	𝑚. 

For certain chirp-rate domain, we can define the DLCT pairs in the matrix form as 

	𝑿 = 𝑫S	𝒙   and   𝒙 = 𝑫ES	𝑿																																																																																																							(4) 

where		𝑿, 𝒙 are 𝑁 × 1 vectors and 𝑫S, 𝑫ES are 𝑁 × 𝑁 matrices given as 

𝑫S(𝑘, 𝑛) = 𝑒𝑥𝑝 8−𝑗/:
;
<B	?AS	?@CD																																																																																														(5) 

and  

𝑫ES(𝑘, 𝑛) = 𝑒𝑥𝑝 8𝑗/:
;
<B	?AS	?@CD 																																																																																															(6) 

Since the DLCT is a unitary transformation, the DLCT matrices in (5) and (6) are related 
by	𝑫S = 𝑫ES

Y , where (. )Y denotes the conjugate transpose operation,	𝑫S	𝑫ESY = 𝑰, and 𝑰 is 
the identity matrix.  

3 Proposed Filter Design Technique Using the DLCT 
       It is well known that the optimal filter design for stationary process time–invariant signals 
can be achieved with Wiener filter which can be implemented efficiently using fast Fourier 
transform. However, for time–varying nonstationary signals such as chirp signals, we need a 
transform that can handle these time variations in a more efficient way. Therefore, the DLCT 
will be used to represent such signals. In this paper, we will adopt a similar criteria used in 
Wiener filter design which is the minimization of the average square error.  
Our design problem requires that we find the filter response, 𝒈, that minimizes the average 
square error over 𝑀 realizations as follows 

𝒈 = arg 	min
𝒈

1
𝑀	
5‖𝒙ef − 𝒙‖/
g

fGF

																																																																																																				(7) 

 
where 𝒙ef is the DLCT inverse for the multiplication of the observation signal 𝒚f with the filter 
response 𝒈 as 
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	𝒙ef = 𝑫ES𝑮	𝑫S𝒚f																																																																																																																											(8) 
 
and 𝑮 is an 𝑁 × 𝑁 diagonal matrix whose elements are 𝒈 =diag(𝑮) = [𝑔H,	𝑔F, … , 𝑔;EF]. If 
we let 𝒔f = 𝑫S	𝒚f and since 𝑮 is a diagonal matrix, then we can write		𝑮	𝒔𝒊 = 𝑺𝒊	𝒈, where 𝑺f 
is an 𝑁 × 𝑁 diagonal matrix defines as 𝒔f =diag(𝑺f), given that		𝑺rf = 𝑫ES𝑺f. Thus, we can 
rewrite our quadratic cost function 𝐽(𝒈) such as 

𝐽(𝒈) =
1
𝑀	
5(𝑺rf𝒈 − 𝒙)Y	(𝑺rf𝒈 − 𝒙)
g

fGF

																																																																																																		(9) 

or equivalently, 

𝐽(𝒈) =
1
𝑀
5<𝒈Y𝑺rfY𝑺rf𝒈− 2ℛ(𝒙Y𝑺rf𝒈) + 𝒙Y𝒙C
g

fGF

																																																																	(10) 

where ℛ(. ) is the real part. Equation (10) can be expressed in the following form 
	𝐽(𝒈) = 𝒈Y𝑸𝒈 − 2𝒃x𝒈 + 𝑎																																																																																																						(11) 
where, 

𝑸 =
1
𝑀	
5𝑺rfY𝑺rf	
𝑴

𝒊G𝟏

, 

𝒃 =
1
𝑀	
5[2ℛ(𝒙Y𝑺rf)]x
g

fGF

	 , 𝑎𝑛𝑑 

𝑎 = 𝑀	‖𝒙‖/ 
 
The optimal response of the filter 𝒈}~�  is the solution of minimization the cost function 𝐽(𝒈) 
and this can be done by computing the gradient of (11) with respect to	𝒈, which yields 
 
𝒈}~� = 𝑸EF𝒃																																																																																																																																	(12) 
 
Since 𝑸 is a diagonal matrix, its inverse always exists. So far we consider only the minimization 
of the average square error with respect to the filter response		𝒈. Now, how do we choose the 
other parameter in the cost function which is the chirp–rate	𝛽 ? Trying to find the optimal 𝛽 
analytically is not an easy problem to solve. In this paper, we use an approach based on the 
DLCT. We compute the DLCT of the observation signal and find the chirp–rate that 
maximizes it. 
In (12), the optimal solution 𝒈}~�  depends on the desired signal	𝒙. An estimate for the desired 
signal can be obtained using the algorithm given in [18]. 



Third Conference for Engineering Sciences and Technology (CEST-2020) 
01-03 December 2020 / Alkhoms - Libya 

CEST2020-DEC-03-012-4 5 

4 Results and Discussion 

To demonstrate the performance of the proposed DLCT denoising algorithm, two examples 
are performed using a synthetic signal and a real–world signal. In each example, we compare 
the mean square error (MSE) of the proposed method with the DLCT filtering algorithm 
given in [18]. The estimated signal using the DLCT algorithm is used as the desired signal for 
the proposed method with a set of 20 realizations. 
 
For the case of synthetic signal, we use the signal given in Figure 1(a). Figure 1(b) and (c) show 
the noisy chirp signal, and the denoised chirp signal using optimal DLCT filtering method, 
respectively. In Figure 1(d), we present the MSE for various algorithms against signal–to–

noise ratio (SNR). It can be seen that the proposed optimal filtering algorithm outperforms 
the performance of the DLCT filtering algorithm.  

(a) (b) 

(c) (d) 
Figure  1: Linear chirp signal:  (a) the chirp signal, (b) the noisy chirp signal with SNR=0 dB, (c) 
the filtered chirp signal using the optimal DLCT filtering method, (d)   the mean square error for 

the DLCT and optimal DLCT methods.   
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      To quantify the MSE improvement, a real–world signal (bird chirping signal) with varying 
noise level is also simulated. The noiseless and corresponding corrupted bird chirping signals 
are presented in Figure 2(a) and (b). The denoised bird chirping signal based on the optimal 
DLCT filtering algorithm is shown in Figure 2(c) at SNR=0 dB. Similar to the previous 
example, Figure 2(d) depicts the MSE for the proposed method compared with the 
conventional DLCT filtering algorithm [18] as a function of the input SNR, where input SNR 
is varied from -10 dB (severely poor SNR) to 15 dB (high SNR). The DLCT filtering algorithm 
greatly enhances the MSE for low SNR levels. It is shown that for proposed filtering method, 
the performance is not optimal since it achieves worse MSE at high SNR. This is because the 
signal has many components with different chirp rates.  

5 Conclusions 

In this paper, an optimal filtering method based on the discrete linear chirp transform is 
proposed. The design of the filter is carried out and a closed form solution for the impulse 
response of the filter is derived.  The performance of the proposed filter is compared with 
other algorithms.  Simulation results show that the DLCT optimal filtering method 

(c) 

(b) (a) 

(d) 

Figure 2: Real–world signal: (a) the bird chirping signal, (b) the noisy bird chirping signal with 
SNR=0 dB, (c) the filtered bird chirping signal using optimal DLCT filtering method, (d) the MSE 

for various methods. 
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outperform the performance of the conventional DLCT filtering algorithm for mono–
component chirp signals. However, for multi–component chirp signals, the proposed filter 
gives better performance in low signal–to–noise ratio environment. As a future work, we will 
look for another approach that can deal with multicomponent signals contaminated in noise 
more optimally.  
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