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ABSTRACT 

      

In this paper, we use the concept of λ-closed set and  -closed set to define two classes of 

generalized regular closed sets; namely λ-generalizations and  -generalizations.  The class 

of λ-generalizations includes:    -closed set,   λ-closed set and r   -closed set, while the 

second class of generalizations includes:  .r-closed set,   .r-closed set and r.  -closed set.  

We investigate the characterizations of these generalizations, moreover, we illustrate the 

implications of these classes among themselves and with the known sets, and finally we 

study their behavior in regular spaces and in extremely disconnected spaces. 

Keywords: Topological space and generalizations, regular space, extremely disconnected 

space. 
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1.  INTRODUCTION                   

 

The concept of regular closed sets was introduced be Stone in 1937 [1], where a 

subset in a topological space is called regular closed (briefly r-closed) if its equals to the 

closure of its interior, Stone studied this class of sets, and showed that r-closed set is 

stronger than closed set.  The family of r-closed sets has some applications in the 

semiregularization space [1,2], also in a generalization for algebraic openings and closings 

in a complete lattice [3].   

Many studies in the literature have been made on defining different generalizations of 

closed sets as;  -sets,  -closed sets,  -closed sets, α-closed sets, semi-closed sets, preclosed 

sets, b-closed sets, etc., where these notions were defined using the closure and the interior 

operations.  The concept of these generalizations play a significant role in general topology, 

and used to derive several forms of higher and lower separation axioms and compactness. 

Maki [4] introduced the notion of ᴧ-sets in topological spaces, where a ᴧ-set is a set 

that equals to its kernel, i.e. to the intersection of all open supersets of the set, then in 2021, 

Almarghani and Arwini [5] introduced generalizations of regular closed sets, namely   -

sets, g.  -sets,   . -set and   .  -set, by considering the notion of the closure operator ᴧ -

closure.  Arenas et al. [6] introduced and investigated the notion of λ-closed sets by 

involving ᴧ-sets and closed sets, this enabled them to obtain new separation axioms by 
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utilizing the notion of λ-closure operator.  The concept of generalized closed set (briefly  -

closed) was due to Levine in 1970 [7], when he used this notation to define a space called 

  

 

-space, and he showed that   

 

 is strictly between the spaces    and    [8,9,10].  In 1993, 

Palaniappan [11] introduced the concept of regular generalized closed sets (briefly r  -

closed) and he proved that this class of sets is weaker than the class of  -closed sets.  Later 

on 2011 [12] Bhattacharya defined a new class of sets called generalized regular closed sets 

(briefly    r-closed), when he studied the behavior relative to unions, intersections and 

subspaces; moreover, he proved that these class of sets are weakly ordered as; r-closed set, 

 .r-closed set,  -closed set then r. -closed set. 

The purpose of this article is to use the notions of λ-closed set and  -closed set to 

define two classes of generalized regular closed sets; namely λ-generalizations and  -

generalizations, where λ-generalizations class consists the sets:    -closed sets,   λ-closed 

sets and r   -closed sets, while the second class of generalizations contains the sets:  .r-

closed sets,   .r-closed sets and r.  -closed sets, where  .r-closed sets and r. -closed sets 

were due to Bhattacharya and Palaniappan, as we mentioned before.  We discuss the 

properties of these generalizations, moreover, we illustrate the implications of these classes 

among themselves and with the known sets, and finally we investigate their behavior in 

regular spaces and in extremely disconnected spaces. 

We divided our article into five main sections as; introduction, preliminaries, λ-

generalizations,  -generalizations and finaly conclusion. 

 

2.  PRELIMINARIES  

 

In this section, we recall the definitions of regular-closed sets, v-sets, λ-closed sets and 

 -closed sets, with some of their properties that we need in the sequel.       

Throughout this paper (   ) represented non-empty topological space, and will 

replaced by X if there is no chance of confusion, no separation axioms assumed unless 

otherwise mentioned.  If A is a subset of a space X, the notions   and    denote the closure 

and the interior of A; respectively.   

 

2. 1.  Regular Closed Sets             

 

Definition 2.1.1. [1] A subset B of a space (   ) is called regular closed (briefly r-closed) if 

B=   ̅̅̅, while the set B is called δ-closed set if B is the intersection of r-closed sets.  The 

family of all r-closed sets in (   ) is denoted by RC(   ). 

Corollary 2.1.1. [1]  

1- Every r-closed set is δ-closed set. 

2- Every δ-closed set is closed set. 

3- Intersection of r-closed sets is not necessarily r-closed. 

4- Finite union of r-closed sets is r-closed. 

Definition 2.1.2. [13] Let A be a subset of X then, the r-closure of A is defined as the 

intersection of all r-closed sets containing A, and is denoted   
 
. 
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Proposition 2.1.1. [13] Let X be a space and A, B⊆X, then: 

1-   
 
 is δ-closed set but not r-closed set in general. 

2- A ⊆   ⊆  
 
. 

3- If A is r-closed then A=  
 
. 

4- A is δ-closed if and only if A=  
 
.  

 

Definition 2.1.3. [13] A space X is called  regular-space if for any closed set F and x F 

there exist disjoint open sets U and V such that x U and F⊆V. 

 

Definition 2.1.4. [14] A space X is called extremely disconnected (briefly e.d) if, the closue 

of every open set in x is also open. 

Proposition 2.1.2. [14] In extremely disconnected space (   ); we have: 

1- Any r-closed set is clopen. 

2- Any r-open set is clopen. 

3- RO(   ) =RC(   ) =    , where RO(   ) is the family of all r-open sets in X, and    

is the collection of all closed sets in X. 

 

 

2. 2.  ᴧ-Sets and Regular ᴧ-Sets 

Definition 2.2.1. [4] Let В be a subset of a topological space (   ), then: 

1-   = {F: F⊆B‚ F is closed}.  

2-  ᴧ = {U: B⊆U‚ U is open}. 

3-     =  { N: N⊆B , N is r-closed}.   

4-  ᴧ =  {W: B⊆W, W is r-open}. 

 

Definition 2.2.2. [4] A subset B of a topological space (   ) is called: 

1- v-set if   =B . 

2- ᴧ-set if B = ᴧ. 

3-   -set if    =B. 

4- ᴧ -set if B =  ᴧ . 

Theorem 2.2.1. [5] Let A and B be subsets of a topological space (   )‚ then the following 

properties are hold: 

1-    ⊆  ⊆ ⊆  ᴧ ⊆  ᴧ  . 
2- If A⊆B then     ⊆    and  ᴧ ⊆  ᴧ   
3- (   )  =    .  

4-  ( ᴧ ) ᴧ =  ᴧ .  

5- (   )   = (    )ᴧ   
6- ( ᴧ )  =(   )                                       
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Theorem 2.2.2. [5] In a topological space (   ) the following hold: 

1- Every r-closed is   -set. 

2- Every   -set is v-set. 

3- Every r-open is ᴧ -set. 

4- Every ᴧ - set is ᴧ-set. 

5- B is   -set iff    is ᴧ -set. 

 

Diagram 1, shows the implications between the generalizations: 

 

 

r-closed       -set              r-open   ᴧ -set 

                          and                            

closed       -set                   open     ᴧ-set 

 

Diagram 1. Generalizations of regular closed sets and regular open sets. 

 

Theorem 2.2.3. [5] In e.d space (   ), if A⊆X then  ᴧ = 
 
. 

Theorem 2.2.4. [5] In regular space (   ), if A⊆X, then  
 

     

Corollary 2.2.1. [5] In regular e.d space X, if A⊆X, then  ᴧ = 
 
=   

 

 

2. 3.  λ-Closed Sets 

 

Definition 2.3.1. [6] A subset A of a topological space (X, τ) is called λ-closed if A= L∩F‚ 

where L is ᴧ-set and F is closed set.   

 

Corollary 2.3.1. [6]  

-1 Every closed set is λ-closed 

 -2 Every ᴧ-set is λ-closed.   

 

Theorem 2.3.1. [6] For a subset A of a topological space (X, τ) the following statements are 

equivalent: 

1- A is λ-closed. 

2- A=   ∩ A . 
 

2. 4.  -Closed Sets 

 

Definition 2.4.1. [10,11,12] A subset A of a topological space (X, τ) is said to be : 

1- Generalized closed (briefly  -closed) if   ⊆U whenever A⊆U and U is open in X. 

2- Regular generalized closed (briefly r. -closed) if   ⊆W whenever A⊆W and W is r-

open . 
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3- Generalized regular closed (briefly  .r-closed) if   
 
⊆U whenever A⊆U and U is open 

in X. 

 

Corollary 2.4.1. [10] 

1- Any closed set is  -closed. 

2- Union of  -closed  sets is  -closed. 

3- Finite Intersection of  -closed sets is not necessarily  -closed. 

 

Corollary 2.4.2. [10] If X is a topological space and x is a point in X such that {x} is not 

closed, then * +   is a  -closed set. 

 

Theorem 2.4.1. [10] For a subset A of a topological space (X, τ) the following statements 

are equivalent: 

1- A is closed. 

2- A is  -closed and λ-closed. 

 

 

3.  λ-GENELAIZATIONS  

 

In this section, we define a new class of generalizations by involving ᴧ -sets and r-

closed sets; namely λ-generalizations that contains the sets:    -closed set,   λ-closed set and 

r   -closed set.  We prove that these sets are weakly ordered as: r-closed set,    -closed set, 

r   -closed set, λ-closed set.  In addition, we investigate the properties of this class of 

generalizations in regular spaces and in e.d spaces. 

 

Definition 3.1. A subset A of a topological space (X, τ) is called: 

1- r λ-closed if A=L∩F‚ where L is ᴧ -set and F is r-closed set. 

2- r   -closed if A=L∩F, where L is ᴧ-set and F is r-closed set. 

3-   λ-closed if A=L∩F‚ where L is  ᴧ -set and F is closed set.  

 

Theorem 3.1. In a topological space (X, τ), we have: 

1- Any r-closed set in X is r λ-closed and r   -closed. 

2- Any closed set in X is   λ-closed and λ-closed. 

3- Every ᴧ -set is r λ-closed set and   λ-closed.   

4- Every ᴧ-set is r   -closed set and λ-closed. 

 

Corollary 3.1. 

1- Every r λ-closed set is r   -closed and   λ-closed. 

2- Every r   -closed is λ-closed. 

3- Every   λ-closed is λ-closed. 

Proof: 

1- Direct since every r-closed is closed and ᴧ -set is ᴧ-set. 

2- Direct since every r-closed is closed 

3- Direct since every ᴧ -set is ᴧ-set. 
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Example 3.1. Let X= {a‚b‚c‚d} and τ= {Ø, X‚ {a}, {b‚c}‚ {a‚b‚c}}, then RC(X, τ)= {Ø‚ X‚ 

{b‚c‚d}‚ {a‚d}}.  If A= {a‚b,c}, B= {b,c} and C= {d}, then: 

3- A is r   -closed but not r λ-closed; also A is λ-closed but not   λ-closed. 

4- B is r λ-closed but not r-closed; also B is   λ-closed but not closed. 

5- C is λ-closed but not r   -closed; also C is   λ-closed but not r λ-closed.  

  

Theorem 3.2. A subset A of a topological space (X, τ) is r λ-closed iff A=     
 
 . 

Proof:  Suppose A is r λ-closed then A=B∩F‚ where B is ᴧ -set and F is r-closed set, so 

A   
 
 and A   , thus A       

 
…..(1), A=B∩FF then   

 
  (F is r-closed), A= 

B∩FB then     B (B is  ᴧ  -set) and      
 
  ∩F, i.e.       

 
 A… (2).  From (1) 

and (2) we get A=     
 
. 

  Suppose A=     
 
, since     is ᴧ -set and   

 
is r-closed then A is r λ-closed. 

 

Theorem 3.3. A subset A of a topological space (X, τ) is r   -closed iff A=    
 
. 

Proof:  Suppose A is r   -closed, so A= B∩F where B is ᴧ-set and F is r-closed set, and 

since A   ̅  and A    we have A      
 
 ......(1), now since A=B∩FF, then   

 
  (F 

is r-closed), A=B∩F B then    B (B is ᴧ-set), we obtain     
 
  ∩F, i.e.     

 
 

A……(2).  From (1) and (2) we get A=     
 
.  

 Suppose A=    
 
, since    is ᴧ-set and   

 
is r-closed then A is   λ-closed. 

 

Theorem 3.4. A subset A of a topological space (X, τ) is   λ -closed iff A=      . 

Proof:  Suppose A is   λ-closed, so A= T∩C, where T is  ᴧ -set and C is closed set, since 

A    and A    then A       ......(1), now A=T∩CC then     (C is closed ), A= 

T∩C T so      T (T is  ᴧ -set ), we have        ∩C, i.e.       A……(2).  From 

(1) and (2) we get A=     . 

 Suppose A=     , since     is ᴧ -set and   is closed then A is   λ -closed. 

 

Theorem 3.5. In regular space (X, τ) if AX then: 

1- A is r   -closed iff A is λ-closed. 

2- A is r λ-closed iff A is   λ-closed  
Proof: 

1-  Direct. 

 If A is λ-closed then from theorems (2.3.1), (2.2.4) and (3.3) we obtain A=      =   

  
 
, so A is r   -closed. 

2-  Direct. 

 If A is    λ-closed then from theorems (3.4), (2.2.4) and (3.2) we obtain A=     

 =      
 
, so A is r λ-closed. 
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Theorem 3.6. In e.d space (X, τ) if AX then: 

1- A is r λ-closed iff    
 
=A. 

2- A is r   -closed iff A is ᴧ-set. 

3- A is   λ-closed iff A is closed.  

Proof:  

1-  If A is r λ-closed, then A=      
 
=   

 
  

 
=  

 
. 

 If   
 
= A, then      

 
=      = , so A is r λ-closed. 

2-  If A is r   -closed, then A=    
 
=       =  , so A is ᴧ-set. 

 If A is ᴧ-set, then     
 
=A  

 
=A, so A is     -closed. 

3-  If A is   λ-closed, then A=      =  
 

  = , so A is closed.  

 If A is closed, then       =    A=A, so A is    λ-closed. 

 

Corollary 3.2. In e.d regular space X, if AX, then these statements are equivalent: 

1- A is ᴧ-set. 

2- A is λ-closed. 

3- A is     -closed. 

Proof: Direct from the previous theorems. 

 

Corollary 3.3. In e.d regular space X, if AX, then these statements are equivalent: 

1- A is r λ-closed. 

2- A is    λ-closed. 

3- A is closed. 

4-   
 
=A. 

Proof: Direct from theorems (3.5) and (3.6). 

 

 

4.   -GENERALIZATIONS 

 

In the present section, we define a new generalization of r-closed sets; namely r    -

closed sets.  We study their properties and illustrate the implication of this set with the 

known sets; as is  -closed set, r. -closed set and  .r-closed set, then we investigate the 

behaviour of these generalizations in regular spaces and in e.d spaces. 

 

Definition 4.1. A subset A of a space X is said to be regular generalized star closed (briefly 

r   -closed) if  
 
⊆W whenever A⊆  and W is r-open in X. 

 

Corollary 4.1.  In any a topological space (X, τ) these statements are hold: 

1- Every r-closed set is  .r-closed. 

2- Every   r-closed set is r    -closed. 

3- Every r    -closed set is r. -closed. 

4- Every  -closed set is r. -closed. 
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Proof: 

1- Direct since   
 
=A  

2- Direct since every r-open set is open. 

3- Direct since   ⊆ ̅  for any subset A in X. 

4- Direct since every r-open set is open. 

 

Examples 4.1. In the cofinite topology on ℝ, we have RO(ℝ ,  ) ={ℝ, ∅}.  If A is any non-

empty finite set then   
 
= ℝ and the only r-open set W such that AW is W= ℝ, so A is 

r   -closed, but not  .r-closed since   
 
= ℝ and U=* +  , where x   is an open set contains 

A, but   
 

 U. 

 

Corollary 4.2. If X is a topological space and x is a point in X such that {x} is not r-closed, 

then * +   is r. -closed set. 

 

Theorem 4.1. A subset A in a topological space (X, ) is  -closed iff    ⊆     
Proof:  Let A be a  -closed set in X , and let V be an open set such that  ⊆V , then 

A⊆    ⊆V, since A is  -closed and V is open then   ⊆V, i.e. for any open set V such that   

⊆V we have   ⊆V, so   ⊆  
 ⊆ 

 . Hence   ⊆     

  Suppose   ⊆  and V is an open set such that   ⊆V, then A⊆   ⊆V, so   ⊆   ⊆V, i.e. 

A is  -closed set. 

  

Theorem 4.2. A subset A in a topological space (X, ) is  .r-closed iff   
 
⊆   . 

Proof:  For any open set U in X such that   ⊆U we have A⊆   ⊆U and   
 
⊆U since A is 

 .r-closed so   
 
⊆  

 ⊆ 
U. U is an open set, then   

 
⊆  . 

  Suppose   
 
⊆  , and U is an open set in X such that   ⊆U, then A⊆   ⊆U we have 

  
 
⊆   ⊆U then   

 
⊆U.  Hence A is  .r-closed. 

 

Theorem 4.3. A subset A in a topological space (X, ) is r   -closed  iff   
 
⊆   . 

Proof:  Suppose A is r   -closed set, then for any r-open set W in X such that   ⊆W we 

have A⊆   ⊆W since A is r   -closed, we get   
 
⊆W, then   

 
⊆  

 ⊆ 
W, W is r-open so 

  
 
⊆     

  Suppose  
 
⊆    and W is r-open set such that   ⊆W then A⊆   ⊆W so   

 
⊆   ⊆W, 

i.e.   
 
⊆  hence A is r   -closed. 

 

Corollary 4.3. For a subset A of a topological space (X, τ), we have: 

1- If A is r-closed set then A is r   -closed and r λ-closed. 

2- If A is r   -closed and r λ-closed then A is δ-closed. 
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Proof: 

1- Direct from theorem (3.1) and corollary (4.1). 

2- Since A is r    -closed and r λ-closed, we have   
 
⊆    and A=     

 
, then 

 
 
⊆     

 
, so  

 
⊆A , i.e.  

 
=A.  We get A is δ-closed closed. 

 

Corollary 4.4. In e.d space (x, τ), any subset of X is r. -closed and r   -closed. 

Proof: Let A⊆X, and W is r-open set such that A⊆W, since any r-open set in e.d space is r-

closed, then  
 
⊆  

 
so  

 
⊆W and we have   ⊆  

 
⊆W, thus A is r. -closed and r   -

closed. 

   

Corollary 4.5. In regular space (X, τ), a subset A of X is r. -closed iff A is r   -closed. 

Proof:   Direct since any r   -closed is r. -closed. 

 Suppose A is r  -closed and A⊆W when W is r-open set, then   ⊆W since X is regular, 

we have  
 
= , so  

 
⊆W, hence A is r   -closed.     

   

Corollary 4.6. In regular space (X, τ), any subset A of X is  -closed iff A is  .r-closed. 

Proof:   Direct. 

 Suppose A is  -closed, and A⊆U where U is an open set, then   ⊆U, since X is regular 

space  
 
=A so  

 
⊆ ⊆    thus A is  .r-closed.     

 

 

CONCLUSION  

In this paper, we introduce new classes of generalizations using the notions of λ-closed sets 

and  -closed sets; namely λ-generalizations and  -generalizations.  The first class of 

generalizations includes;    -closed set,   λ-closed set and r   -closed set, while the class of  -

generalizations includes;  .r-closed set,   .r-closed set and r.  -closed set, where  .r-closed 

and  .r-closed were due to Bhattacharya and Palaniappan.  The characterizations of these 

generalizations are studied, moreover, we illustrate the implications between these sets, and 

finally we study their behavior in regular spaces and in extremely disconnected spaces. 

         Here we summarize our results:                     

 The following diagrams show the implications between the new classes of 

generalizations: 

 

 

r-closed        -closed    r   -closed 

                                          

Closed      λ-closed    λ-closed 
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Diagram 2. Implication between the class of λ-generalization sets. 

 

 

r-closed      .r-closed    r    -closed 

                                             

Closed        -closed      r. -closed 

 

     Diagram 3. Implication between the class of  -generalization sets. 

 In any space X, if a singleton {x} is not r-closed then * +   is r. -closed set. 

 In any space X, if  A⊆X then: 

- A is  -closed iff    ⊆     

- A is   r-closed iff   
 

⊆     

- A is r.  -closed iff    
 

⊆      
- If A is r   -closed and r λ-closed then A is δ-closed. 

 In regular space X, if  A⊆X then: 

-   
 

  . 

- A is λ-closed set iff A is r   -closed. 

- A is r λ-closed set iff A is    λ -closed. 

- A is  -closed-set iff A is    r-closed. 

- A is r  -closed-set iff A is r   -closed.  

 In e.d space X, if A⊆X then: 

-  
 
 

    . 

- A is closed iff A is    λ-closed. 

- A is ᴧ-set iff A is r   -closed. 

-  
 

 A iff A is r λ-closed. 

- Any subset of X is r  -closed and r   -closed. 

 In regular e.d space X, if A⊆X then these statements are equivalent: 

- A is ᴧ-set. 

- A is λ-closed. 

- A is     -closed. 

 In regular e.d space X, if A⊆X then these statements are equivalent: 

- A is r λ-closed. 

- A is    λ-closed. 

- A is closed. 

-   
 
=A. 
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