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Abstract:  

        In this paper, some the sufficient conditions for the oscillation of the solutions 

of the second order non-linear ordinary differential equation of the form  

))(,())()()),((()()()()( txtHtxtrtxgtqtxxtr 






 




  

are obtained using Riccati Technique. The given results are the extension and 

improvement of the results of oscillation which were obtained before by many 

authors as Bihari [2] and Kartsatos [7]. These results are illustrated with examples 

that are solved using Runge Kutta method of forth order. 

1. Introduction 

        Consider the second order non-linear ordinary differential 2equation of the 

form  

)())(,())()()),((()()()()( EtxtHtxtrtxgtqtxxtr 






 




  

where r,   and q are continuous functions on the interval   )(,0,, 00 trtt  is a 

positive function, g is continuously differentiable function on the real line R except 

possibly at 0 with 0)( xxg  and 0)(  kxg  for all ,0x   is a continuous function 

on RxR with 0),(  vuu  for all u 0  and ),(),( vuvu    for any ),,( vu R
3
 and 

H is a continuous function on  ,0t ×R with )())(())(,( tptxgtxtH   for all x 0 and 

t 0t .Throughout this study, we restrict our attention only to the solutions of the 
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differential ordinary equation (E) that exist on some ray  ,,xt  where xt  may 

depend on the particular solution. A solution )(tx  of the differential equation (E) is 

said to be oscillatory if it has arbitrary large zeros, and otherwise it is said to be.non-

oscillatory. Equation (E) is called oscillatory if all its solutions are oscillatory, and 

otherwise it is called non oscillatory. Particular cases of the equation (E) have been 

considered by many authors for example [1-13]. Some of these particular cases can 

be classified as follows  

  )3()(,))(()()()(

)2(0))(,)(()()(

)1(0)()()(

txtHtxgtqtxtr

txtxtqtx

txtqtx





















 

The oscillation of linear equation (1) has brought the attention of  many authors 

since because of  Fite [3]. He proved that if 0)( tq for all 0tt   and 






0

,)(
t

dssq then every solution of the equation (1) is oscillatory. Wintner [12] 

extended the result of Fite [3] to an equation in which q is of arbitrary sign and 

supposed that   

  ,)(
1

lim

0


dssqst

t

t

t
t

 

then, every solution of the equation (1) is oscillatory. In the following,  Kamenev 

[6] has  proved  a  new  integral  criterion  for  the  oscillation of  the differential 

equation (1) based on the use of the  n the  primitive  of  the  coefficient q(t), which 

has Wintner’s result [12] as  a  particular case. He has showed that the equation (1) 

is oscillatory if   
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for some integer 3n . The oscillation of the equation (2) has brought the attention 

of some authors because of Bihari [2], who has proved that if 0tt0 q(t)  allfor  

and 






0

)(
t

dssq , 

then, every solution of the equation (2) is oscillatory. The following result extended 

the result of Bihari [2] to an equation in which q is of arbitrary sign, in this 

theorem, Kartsatos [7] has supposed  

(i)  There exists a constant  0, RC  such that 

 




u

C
u

du
mG

0
),1(

)( for all Ru , 

(ii) .)(

0





t

dssq  

Then, every solution of equation (2) is oscillatory. Many authors are concerned 

with the oscillation criteria of solutions of the homogeneous second order nonlinear 

differential equations. However, of the non-homogeneous equation, little is known. 

Greaf, Rankin and Spikes [5] gave some theorems for the non-homogeneous 

equation (3) for example, they proved that if 

(1)   ,0,)( 11  aatr  

(2)      


t

t

s

t
t

dudsupuq
t

0 0

,)()(
1

lim  

then, all solutions of equation (3) are oscillatory. 

2. MAIN RESULTS 

        In this section, Riccati technique is used to reduce the higher-order equations 

to the first-order Riccati equation or inequality to establish sufficient conditions for 
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oscillation of (E). Comparisons between our results and the previously known are 

presented and some examples illustrate the main results. 

Theorem2.1: Suppose that 

(1) 0,,)( 2121  bbbxb  for all .IRx  

(2)     .0,
),1(

1
inflim 00 


CC

vv
, 

(3)      
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** 0,
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)( R
+
. 

Assume that there exists   be a positive continuous differentiable function on the 

interval  ,0t  with )(t  is increasing on the interval  ,0t and such that  

(4)        ,)()()(
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1
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t

T
t
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 where,     ,0,: 0tp , then every solution of equation (E) is oscillatory. 

Proof: 

      Without loss of generality, we may assume that there exists a solution x(t) of 

equation (E) such that   .0,0)( 0  tTsomeforTontx  Define    
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Thus by condition (1) and equation (E) imply 
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Dividing the last inequality by   ,0)()(,1  tt  we have
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Integrate the last inequality from T to t, we obtain 
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By the Bonnet’s theorem, we see that for each ,Tt  there exists  tTT ,1   such that 
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From inequality (2-3) in inequality (2-2), we have 
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By condition (3), dividing the last inequality by )(t and taking the limit superior on 

both sides, we obtain 
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tas , which contradicts to the condition (4). Hence the proof is completed.
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Consider the differential equation  
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      All conditions of theorem2.1 are satisfied and hence every solution of the given 

equation is oscillatory. To ensure that our result in theorem2.1 is true we also find 

the numerical solutions of the given differential equation in example 2.1 using the 

Runge Kutta method of fourth order (RK4). We have             

xxxtxtxtftx 99.3)cos())(),(,()( 


 

  with initial conditions 5.0)1(,1)1( 


xx  on the chosen interval  100,1 , the function 

,1 and finding values of  the functions r, q and  f  where we consider 

)()())(,( xltftxtH   at  t=1,  n=500 and h=0.198 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Numerical solution of ODE1 

 

K tk x(tk) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1 

1.1980 

1.3960 

1.5940 

1.7920 

1.9900 

2.1880 

2.3860 

2.5840 

2.7820 

2.9800 

3.1780 

3.3760 

3.5740 

3.7720 

3.9700 

1 

0.8370 

0.5662 

0.2258 

-0.1412 

-0.4917 

-0.7824 

-0.9733 

-1.0352 

-0.9578 

-0.7539 

-0.4544 

-0.0999 

0.2663 

0.6009 

0.8617 
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Figure1: Solution curve of ODE 1 

Remark 2.1: Theorem 2.1 is extension of the results of Bihari [2], Kartsatos [7], 

Kamenev [6] and Wintiner [12]. All results of them [2], [7], [6] and [12] cannot be 

applied to the given equation in example2.1. 

Theorem 2.2: Suppose, in addition to the condition (1) that 
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where,     ,0,: 0tp , then every solution of equation (E) is oscillatory. 
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Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (E) such that   .0,0)( 0  tTsomeforTontx  By conditions (5) and (6) 

and from inequality (2-1) divided by   ,0)()(,1  tt   we have 
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By the Bonnet’s theorem, we see that for each ,Tt  there exists  tTat ,  such that 
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From inequality (2-5) in inequality (2-4), the condition (3) and taking the limit 

superior on both sides, we obtain 
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tas , which contradicts to the condition (7). Hence the proof is completed. 

Example2-2: Consider the following differential equation  
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We get all conditions of theorem2.2 are satisfied and hence every solution of the 

given equation is oscillatory. The numerical solutions of the given differential 

equation are found out using the Runge Kutta method of fourth order (RK4). We 

have  
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Table 2: Numerical solution of ODE2 

K tk x(tk) 

1 

2 

3 

4 

5 

6 

. 

. 

16 

17 

18 

. 

. 

27 

28 

29 

1 

1.198 

1.396 

1.594 

1.792 

1.99 

. 

. 

3.97 

4.168 

4.366 

. 

. 

6.148 

6.346 

6.544 

-0.5 

-0.302 

-0.1039 

0.0942 

0.2922 

0.4903 

. 

. 

-0.1495 

-0.3465 

-0.5434 

. 

. 

0.042 

0.2334 

0.4248 
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Figure2: Solution curve of ODE 2 

Remark2.2: 

If ,0))(,()())(),(())()()),((()(,1)(,1)()( 


txtHivandtxtxtxtrtxgiiiiitri  then 

theorem2.2 extends results of Bihari [2], Kartsatos [7]. All results of Bihari [2] and 

Kartsatos [7] can’t be applied to the given equation in example2.2. 
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