

חجلة التربوكا مجلة علمية مרكمة تصار عنَكليةالتربية جامعة المرقبا

العدد العشرون
يناير 2022م

هيئـــة تحريـر
 هجلة التربوي

$$
\begin{aligned}
& \text { - المجلة ترحب بما يرد عليها من أبحاث وعلى استعداد لنشر ها بعد التحكيم . } \\
& \text { • المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها } \\
& \text { • • كافة الآراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها الاتها } \\
& \text { - } \\
& \text { • الثجوث المقدمة لللشر لا ترد لأصحابها نشرت أو لم تنشر } \\
& \text { (حقوق الطبع محفوظة للكلية) }
\end{aligned}
$$

يشترط في البحوث العلمية المقدمة للنشر أن ير اعى فيها ما يأتي : . أصول البحث العلمي وقواعده - ألا تكون المادة العلمية قد سبق نشر ها أو كانت جزء الـوا من رسالة علمية . .

- تتعدل البحوث المقبولة وتصحح وفق ما ير اه المحكمون .
- التزام الباحث بالضوابط التي وضعتها المجلة من عدد الصفحات ، ونوع الخط ورقمه ، والفترات الزمنية الممنوحة للتعديل ، وما يستجد من ضوابط تضعها المجلة مستقبلا . تنبيهات :
- للمجلة الحق في تعديل البحث أو طلب تعديله أو رفضه . - يخضع البحث في النشر لأولويات المجلة وسياستها . - البحوث المنشورة تعبر عن وجهة نظر أصحابها ، ولا تعبر عن وجهة نظر المجلة .

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research.
2- The research articles or manuscripts should be original and have not been published previously. Materials that are currently being considered by another journal or is a part of scientific dissertation are requested not to be submitted.
3- The research articles should be approved by a linguistic reviewer.
4- All research articles in the journal undergo rigorous peer review based on initial editor screening.
5- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.
2 - The research articles undergo to the policy of the editorial board regarding the priority of publication.
3- The published articles represent only the authors' viewpoints.

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20 20

Oscillation Criterion for Second Order Nonlinear Differential Equations

M. J. Saad ${ }^{1}$, N. Kumaresan ${ }^{2}$ and Kuru Ratnavelu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Education, Sirte University, Sirte- Libya.
${ }^{2}$ Institute of Mathematical Sciences, University Of Malaya, 50603, Kuala Lumpur, Malaysia. masaa2011@yahoo.com

Abstract

: In this paper, some the sufficient conditions for the oscillation of the solutions of the second order non-linear ordinary differential equation of the form $$
(r(t) \psi(x) \dot{x}(t))^{\dot{-}}+q(t) \Phi(g(x(t)), r(t) \dot{x}(t))=H(t, x(t))
$$ are obtained using Riccati Technique. The given results are the extension and improvement of the results of oscillation which were obtained before by many authors as Bihari [2] and Kartsatos [7]. These results are illustrated with examples that are solved using Runge Kutta method of forth order.

1. Introduction

Consider the second order non-linear ordinary differential 2equation of the form

$$
\begin{equation*}
(r(t) \psi(x) \dot{x}(t))^{\dot{\theta}}+q(t) \Phi(g(x(t)), r(t) \dot{x}(t))=H(t, x(t)) \tag{E}
\end{equation*}
$$

where r, ψ and q are continuous functions on the interval $\left[t_{0}, \infty\right), t_{0} \geq 0, r(t)$ is a positive function, g is continuously differentiable function on the real line R except possibly at 0 with $x g(x)>0$ and $g^{\prime}(x) \geq k>0$ for all $x \neq 0, \Phi$ is a continuous function on RxR with $u \Phi(u, v)>0$ for all $u \neq 0$ and $\Phi(\lambda u, \lambda v)=\lambda \Phi(u, v)$ for any $(\lambda, u, v) \in \mathrm{R}^{3}$ and H is a continuous function on $\left[t_{0}, \infty\right) \times \mathrm{R}$ with $H(t, x(t)) / g(x(t)) \leq p(t)$ for all $x \neq 0$ and $\mathrm{t} \geq t_{0}$. Throughout this study, we restrict our attention only to the solutions of the

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20 20

differential ordinary equation (E) that exist on some ray $\left[t_{x}, \infty\right)$, where t_{x} may depend on the particular solution. A solution $x(t)$ of the differential equation (E) is said to be oscillatory if it has arbitrary large zeros, and otherwise it is said to be.nonoscillatory. Equation (E) is called oscillatory if all its solutions are oscillatory, and otherwise it is called non oscillatory. Particular cases of the equation (E) have been considered by many authors for example [1-13]. Some of these particular cases can be classified as follows

$$
\begin{align*}
& \ddot{x}(t)+q(t) x(t)=0 \tag{1}\\
& \ddot{x}(t)+q(t) \Phi(x(t), \dot{x}(t))=0 \tag{2}\\
& (r(t) \dot{x}(t))^{\bullet}+q(t) g(x(t))=H(t, x(t)) \tag{3}
\end{align*}
$$

The oscillation of linear equation (1) has brought the attention of many authors since because of Fite [3]. He proved that if $q(t)>0$ for all $t \geq t_{0}$ and $\int_{t_{0}}^{\infty} q(s) d s=\infty$, then every solution of the equation (1) is oscillatory. Wintner [12] extended the result of Fite [3] to an equation in which q is of arbitrary sign and supposed that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t}(t-s) q(s) d s=\infty,
$$

then, every solution of the equation (1) is oscillatory. In the following, Kamenev [6] has proved a new integral criterion for the oscillation of the differential equation (1) based on the use of the n the primitive of the coefficient $q(t)$, which has Wintner's result [12] as a particular case. He has showed that the equation (1) is oscillatory if

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n-1}} \int_{t_{0}}^{t}(t-s)^{n-1} q(s) d s=\infty
$$

	مجــلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأتئر العربي 20

for some integer $n \geq 3$. The oscillation of the equation (2) has brought the attention of some authors because of Bihari [2], who has proved that if $\mathrm{q}(\mathrm{t})>0$ for all $\mathrm{t} \geq \mathrm{t}_{0}$ and

$$
\int_{t_{0}}^{\infty} q(s) d s=\infty,
$$

then, every solution of the equation (2) is oscillatory. The following result extended the result of Bihari [2] to an equation in which q is of arbitrary sign, in this theorem, Kartsatos [7] has supposed
(i) There exists a constant $C \in R_{-}=(-\infty, 0)$ such that

$$
\begin{gathered}
G(m)=\int_{0}^{u} \frac{d u}{\Phi(1, u)} \geq-C \text { for all } u \in R, \\
\text { (ii) } \int_{t_{0}}^{\infty} q(s) d s=\infty .
\end{gathered}
$$

Then, every solution of equation (2) is oscillatory. Many authors are concerned with the oscillation criteria of solutions of the homogeneous second order nonlinear differential equations. However, of the non-homogeneous equation, little is known. Greaf, Rankin and Spikes [5] gave some theorems for the non-homogeneous equation (3) for example, they proved that if

$$
\begin{gathered}
\text { (1) } r(t) \leq a_{1}, a_{1}>0, \\
\text { (2) } \lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0} t_{0}}^{s}(q(u)-p(u)) d u d s=\infty,
\end{gathered}
$$

then, all solutions of equation (3) are oscillatory.

2. MAIN RESULTS

In this section, Riccati technique is used to reduce the higher-order equations to the first-order Riccati equation or inequality to establish sufficient conditions for

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربي 20

oscillation of (E). Comparisons between our results and the previously known are presented and some examples illustrate the main results.

Theorem2.1: Suppose that
(1) $b_{1} \leq \psi(x) \leq b_{2}, \quad b_{1}, b_{2}>0$ for all $x \in I R$.
(2) $\liminf _{v \rightarrow \infty} \frac{1}{\Phi(1, v)} \geq C_{0}, C_{0}>0$,
(3) $\quad G(m)=\int_{0}^{m} \frac{d s}{\Phi(1, s)}>-B^{*}, B^{*}>0$ for every $m \in \mathrm{R}^{+}$.

Assume that there exists ρ be a positive continuous differentiable function on the interval $\left[t_{0}, \infty\right)$ with $\rho(t)$ is increasing on the interval $\left[t_{0}, \infty\right)$ and such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{1}{\rho(t)} \int_{T}^{t} \rho(s)\left[C_{0} q(s)-p(s)\right] d s=\infty, \tag{4}
\end{equation*}
$$

where, $p:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$, then every solution of equation (E) is oscillatory.

Proof:

Without loss of generality, we may assume that there exists a solution $x(t)$ of equation (E) such that $x(t)>0$ on $[T, \infty)$ for some $T \geq t_{0} \geq 0$. Define

$$
\omega(t)=\frac{\rho(t) r(t) \psi(t) \dot{x}(t)}{g(x(t))}, t \geq T
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثئير العربي 20 العد

Thus by condition (1) and equation (E) imply

$$
\dot{\omega}(t) \leq \rho(t) p(t)-\rho(t) q(t) \Phi(1, \omega(t) / \rho(t))+\frac{\dot{\rho}(t)}{\rho(t)} \omega(t)-\frac{k}{b_{2} \rho(t) r(t)} \omega^{2}(t), t \geq T
$$

Thus, we have

$$
\begin{equation*}
\rho(t)\left(\frac{\omega(t)}{\rho(t)}\right)^{\bullet} \leq \rho(t) p(t)-\rho(t) q(t) \Phi(1, \omega(t) / \rho(t))-\frac{k}{b_{2} \rho(t) r(t)} \omega^{2}(t), t \geq T \tag{2-1}
\end{equation*}
$$

Dividing the last inequality by $\Phi(1, \omega(t) / \rho(t))>0$, we have

$$
\frac{\rho(t)(\omega(t) / \rho(t))^{\cdot}}{\Phi(1, \omega(t) / \rho(t))} \leq \frac{\rho(t) p(t)}{\Phi(1, \omega(t) / \rho(t))}-\rho(t) q(t), t \geq T
$$

By condition (2),we find $\Phi(1, \omega(t) / \rho(t)) \geq C_{0}$, then for $t \geq T$, we obtain

$$
\rho(t)\left[C_{0} q(t)-p(t)\right] \leq-\frac{C_{0} \rho(t)(\omega(t) / \rho(t))^{\cdot}}{\Phi(1, \omega(t) / \rho(t))}, t \geq T
$$

Integrate the last inequality from T to t, we obtain

$$
\begin{equation*}
\int_{T}^{t} \rho(s)\left[C_{0} q(s)-p(s)\right] d s \leq-C_{0} \int_{T}^{t} \frac{\rho(s)(\omega(s) / \rho(s))^{\bullet}}{\Phi(1, \omega(s) / \rho(s))} d s, t \geq T \tag{2-2}
\end{equation*}
$$

By the Bonnet's theorem, we see that for each $t \geq T$, there exists $T_{1} \in[T, t]$ such that

$$
\begin{equation*}
-\int_{T}^{t} \frac{\rho(s)(\omega(s) / \rho(s))^{\cdot}}{\Phi(1, \omega(s) / \rho(s))} d s=-\rho(t) \int_{T_{1}}^{t} \frac{(\omega(s) / \rho(s))^{\cdot}}{\Phi(1, \omega(s) / \rho(s))} d s \tag{2-3}
\end{equation*}
$$

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأتئر العربي 20

From inequality (2-3) in inequality (2-2), we have

$$
\int_{T}^{t} \rho(s)\left[C_{0} q(s)-p(s)\right] d s \leq-C_{0} \rho(t) \int_{T_{1}}^{t} \frac{(\omega(s) / \rho(s))^{\bullet}}{\Phi(1, \omega(s) / \rho(s))} d s=-C_{0} \rho(t) \int_{\omega\left(T_{1}\right) / \rho\left(T_{1}\right)}^{\omega(t) / \rho(t)} \frac{d u}{\Phi(1, u)}
$$

By condition (3), dividing the last inequality by $\rho(t)$ and taking the limit superior on both sides, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \sup \frac{1}{\rho(t)} \int_{T}^{t} \rho(s)\left[C_{0} q(s)-p(s)\right] d s & \leq-C_{0} \lim _{t \rightarrow \infty} \sup \int_{\omega\left(T_{1}\right) / \rho\left(T_{1}\right)}^{\omega(t) / \rho(t)} \frac{d u}{\Phi(1, u)} \\
& \leq-C_{0} \lim _{t \rightarrow \infty} \sup \left[-\int_{0}^{\omega\left(T_{1}\right) / \rho\left(T_{1}\right)} \frac{d u}{\Phi(1, u)}+\int_{0}^{\omega(t) / \rho(t)} \frac{d u}{\Phi(1, u)}\right] \\
& \leq C_{0} \lim _{t \rightarrow \infty} \sup \left(G\left(\frac{\omega\left(T_{1}\right)}{\left.\rho\left(T_{1}\right)\right)}\right)+B^{*}\right)<\infty,
\end{aligned}
$$

as $t \rightarrow \infty$, which contradicts to the condition (4). Hence the proof is completed.

Example2. 1

Consider the differential equation

$$
\left(t \frac{x^{2}(t)+4}{x^{2}(t)+3} \dot{x}(t)\right)^{\bullet}+\left(\frac{t^{3}+3 \cos t}{t^{2}}\right) x(t)=\frac{x(t) \cos x(t)}{t^{4}}, t>0
$$

Here $r(t)=t, \psi(t)=\frac{x^{2}(t)+4}{x^{2}(t)+3} q(t)=\frac{t^{3}+3 \cos t}{t^{2}}, g(x)=x, \Phi(u, v)=u$ and $\frac{H(t, x(t))}{g(x(t))}=\frac{\cos x(t)}{t^{4}} \leq \frac{1}{t^{4}}=p(t)$ for all $t>0$ and $x \neq 0$. Taking $\rho(t)=t^{2}$ such that

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل الثتأثير العربي 20

$$
\lim _{t \rightarrow \infty} \frac{1}{\rho(t)} \int_{T}^{t} \rho(s)\left(C_{0} q(s)-p(s)\right) d s=\lim _{t \rightarrow \infty} \frac{1}{t^{2}} \int_{T}^{t} s^{2}\left(\frac{C_{0} s^{3}+3 C_{0} \cos s}{s^{2}}-\frac{1}{s^{4}}\right) d s=\infty .
$$

All conditions of theorem2.1 are satisfied and hence every solution of the given equation is oscillatory. To ensure that our result in theorem 2.1 is true we also find the numerical solutions of the given differential equation in example 2.1 using the Runge Kutta method of fourth order (RK4). We have

$$
\ddot{x}(t)=f(t, x(t), \dot{x}(t))=x \cos (x)-3.99 x
$$

with initial conditions $x(1)=1, \dot{x}(1)=-0.5$ on the chosen interval $[1,100]$, the function $\psi \equiv 1$, and finding values of the functions r, q and f where we consider $H(t, x(t))=f(t) l(x)$ at $t=1, n=500$ and $h=0.198$

K	t_{k}	$x\left(t_{k}\right)$
1	1	1
2	1.1980	0.8370
3	1.3960	0.5662
4	1.5940	0.2258
5	1.7920	-0.1412
6	1.9900	-0.4917
7	2.1880	-0.7824
8	2.3860	-0.9733
9	2.5840	-1.0352
10	2.7820	-0.9578
11	2.9800	-0.7539
12	3.1780	-0.4544
13	3.3760	-0.0999
14	3.5740	0.2663
15	3.7720	0.6009
16	3.9700	0.8617

Table 1: Numerical solution of ODE1

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20 20

Figure 1: Solution curve of ODE 1
Remark 2.1: Theorem 2.1 is extension of the results of Bihari [2], Kartsatos [7], Kamenev [6] and Wintiner [12]. All results of them [2], [7], [6] and [12] cannot be applied to the given equation in example2.1.

Theorem 2.2: Suppose, in addition to the condition (1) that
(5) $\lim _{v \rightarrow \infty} \sup \frac{1}{\Phi(1, v)} \leq C_{1}, C_{1}>0$.
(6) $\frac{1}{\Phi(1, v)} \leq v$ for all $v \neq 0$.

Assume that ρ be a positive continuous differentiable function on the interval $\left[t_{0}, \infty\right)$ with $\rho(t)$ is a creasing function on the interval $\left[t_{0}, \infty\right)$ and such that

$$
\text { (7) } \lim _{t \rightarrow \infty} \sup \int_{T}^{t} \rho(s)\left[q(s)-\frac{1}{4 k^{*}} p^{2}(s)\right] d s=\infty \text {, }
$$

where, $p:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$, then every solution of equation (E) is oscillatory.

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربي 20

Proof: Without loss of generality, we may assume that there exists a solution $x(t)$ of equation (E) such that $x(t)>0$ on $[T, \infty)$ for some $T \geq t_{0} \geq 0$. By conditions (5) and (6) and from inequality (2-1) divided by $\Phi(1, \omega(t) / \rho(t))>0$, we have

$$
\frac{\rho(t)(\omega(t) / \rho(t))^{\cdot}}{\Phi(1, \omega(t) / \rho(t))} \leq p(t) \omega(t)-\rho(t) q(t)-\frac{k^{*}}{r(t) \rho(t)} \omega^{2}(t)
$$

where $k^{*}=k / b_{2} C_{1}$.

Integrate the last inequality from T to t, we obtain

$$
\int_{T}^{t} \frac{\rho(s)(\omega(s) / \rho(s))^{*}}{\Phi(1, \omega(s) / \rho(s))} d s \leq-\int_{T}^{1} \rho(s) q(s) d s-\int_{T}^{t}\left[\frac{k^{*}}{r(s) \rho(s)} \omega^{2}(t)-p(s) \omega(s)\right] d s
$$

Thus, we have

$$
\int_{T}^{t} \frac{\rho(s)(\omega(s) / \rho(s))^{*}}{\Phi(1, \omega(s) / \rho(s))} d s \leq-\int_{T}^{t} \rho(s) q(s) d s-\int_{T}^{t}\left(\sqrt{\frac{k^{*}}{r(s) \rho(s)}} \omega(t)-\frac{1}{2} \sqrt{\frac{r(s) \rho(s)}{k^{*}}} p(s)\right)^{2} d s+\frac{1}{4 k^{*}} \int_{T}^{t} r(s) \rho(s) p^{2}(s) d s
$$

Then, we get

$$
\begin{equation*}
\int_{T}^{1} \rho(s)\left[q(s)-\frac{1}{4 k^{*}} r(s) p^{2}(s)\right] d s \leq-\int_{T}^{t} \frac{\rho(s)(\omega(s) / \rho(s))^{\bullet}}{\Phi(1, \omega(s) / \rho(s))} d s \tag{2-4}
\end{equation*}
$$

By the Bonnet's theorem, we see that for each $t \geq T$, there exists $a_{t} \in[T, t]$ such that

$$
\begin{equation*}
-\int_{T}^{t} \frac{\rho(s)(\omega(s) / \rho(s))^{\cdot}}{\Phi(1, \omega(s) / \rho(s))} d s=-\rho(T) \int_{T}^{a_{i}} \frac{(\omega(s) / \rho(s))^{\bullet}}{\Phi(1, \omega(s) / \rho(s))^{2}} d s \tag{2-5}
\end{equation*}
$$

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثير العربي 20

From inequality (2-5) in inequality (2-4), the condition (3) and taking the limit superior on both sides, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \sup \int_{T}^{t} \rho(s)\left[q(s)-\frac{1}{4 k^{*}} r(s) p^{2}(s)\right] d s & \leq-\rho(T) \lim _{t \rightarrow \infty} \sup \int_{\omega(T) / \rho(T)}^{\omega\left(a_{t}\right) / \rho\left(a_{t}\right)} \frac{d u}{\Phi(1, u)} \\
& \leq-\rho(T) \lim _{t \rightarrow \infty} \sup \left[-\int_{0}^{\omega(T) / \rho(T)} \frac{d u}{\Phi(1, u)}+\int_{0}^{\omega\left(a_{t}\right) / \rho\left(a_{t}\right)} \frac{d u}{\Phi(1, u)}\right] \\
& \leq \rho(T) \lim _{t \rightarrow \infty} \sup \left(G\left(\frac{\omega(T)}{\rho(T)}\right)-G\left(\frac{\omega\left(a_{t}\right)}{\rho\left(a_{t}\right)}\right)\right) \\
& \leq \rho(T) \lim _{t \rightarrow \infty} \sup \left(G\left(\frac{\omega(T)}{\rho(T)}\right)+B^{*}\right)<\infty,
\end{aligned}
$$

as $t \rightarrow \infty$, which contradicts to the condition (7). Hence the proof is completed.

Example2-2: Consider the following differential equation

$$
\left(\frac{2 \dot{x}(t)}{t^{5}+1}\right)^{\cdot}+\left(\frac{t^{5}+4 t^{5} \cos t}{t^{5}+1}\right)\left(x^{9}(t)+\frac{x^{27}(t)}{x^{18}(t)+\left(2 \dot{x}(t) /\left(t^{5}+1\right)\right)^{2}}\right)=\frac{x^{9}(t) \sin (x(t))}{t^{2}}, t>0
$$

Here $r(t)=\frac{2}{t^{5}+1}, \psi \equiv 1, q(t)=\frac{t^{5}+4 t^{5} \cos t}{t^{5}+1}, g(x)=x^{9}, \Phi(u, v)=u+\frac{u^{3}}{u^{2}+v^{2}}$ and

$$
\frac{H(t, x(t))}{g(x(t))}=\frac{\sin (x(t))}{t^{2}} \leq \frac{1}{t^{2}}=p(t) \text { for all } t>0 \text { and } x \neq 0 .
$$

Let $\rho(t)=\frac{t^{5}+1}{t^{5}}>0$ such that

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل النأثير العربد 20

$\lim _{t \rightarrow \infty} \sup \int_{T}^{t} \rho(s)\left[q(s)-\frac{1}{4 k^{*}} r(s) p^{2}(s)\right] d s=\lim _{t \rightarrow \infty} \sup \int_{T}^{t} \frac{s^{5}+1}{s^{5}}\left[\frac{s^{5}+4 s^{5} \cos s}{s^{5}+1}-\frac{1}{4 k^{*}}\left(\frac{2}{s^{5}+1}\right) \frac{1}{s^{2}}\right] d s=\infty$.

We get all conditions of theorem2.2 are satisfied and hence every solution of the given equation is oscillatory. The numerical solutions of the given differential equation are found out using the Runge Kutta method of fourth order (RK4). We have

$$
\ddot{x}(t)=f(t, x(t), \dot{x}(t))=x^{9}(t) \sin (x(t))-42.49\left(x^{9}(t)+\frac{x^{27}(t)}{x^{18}(t)+\dot{x}(t)}\right)
$$

with initial conditions $x(1)=-0.5, x(1)=1$ on the chosen interval [1,100] and finding values of the functions r, q and f where we consider $H(t, x(t))=f(t) l(x)$ at $t=1$, $n=500$ and $h=0.198$.

K	t_{k}	$\mathrm{x}\left(\mathrm{t}_{\mathrm{k}}\right)$
1	1	-0.5
2	1.198	-0.302
3	1.396	-0.1039
4	1.594	0.0942
5	1.792	0.2922
6	1.99	0.4903
\cdot	\cdot	\cdot
.	\cdot	.
16	3.97	-0.1495
17	4.168	-0.3465
18	4.366	-0.5434
\cdot	\cdot	\cdot
.	\cdot	.
27	6.148	0.042
28	6.346	0.2334
29	6.544	0.4248

Table 2: Numerical solution of ODE2

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثير العربي 20

Figure2: Solution curve of ODE 2

Remark2.2:

If (i) $r(t) \equiv 1,(i i) \psi \equiv 1$, (iii) $\Phi(g(x(t)), r(t) \dot{x}(t)) \equiv \Phi(x(t), \dot{x}(t))$ and (iv) $H(t, x(t)) \equiv 0$, then theorem2.2 extends results of Bihari [2], Kartsatos [7]. All results of Bihari [2] and Kartsatos [7] can't be applied to the given equation in example2.2.

3. REFERENCES

[1] F. V. Atkinson, On second order nonlinear oscillations. Pacific. J. Math. 5 (1955), p. 643-647.
[2] I. Bihari, An oscillation theorem concerning the half linear differential equation of the second order, Magyar Tud. Akad.Mat. Kutato Int.Kozl. 8 (1963), p.275280.
[3] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), p. 341-352.
[4] S. R. Grace and B. S. Lalli, Oscillation theorems for certain second perturbed differential equations, J. Math. Anal. Appl. 77 (1980), p. 205-214.

	مجـلة الـتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20 20

[5] J. R. Greaf, S. M. Rankin and P. W. Spikes, Oscillation theorems for perturbed nonlinear differential equations, J. Math. Anal. Appl. 65 (1978), p. 375-390.
[6] I.V. Kamenev, Integral criterion for oscillation of linear differential equations of second order, Math. Zametki 23 (1978), p. 249-251.
[7] A. G. Kartsatos, On oscillations of nonlinear equations of second order, J. Math. Anal. Appl. 24 (1968), p. 665-668.
[8] M. J. Saad, N. Kumaresan and Kuru Ratnavelu, Oscillation of Second Order Nonlinear Ordinary Differential Equation with Alternating Coefficients, Commu. in Comp. and Info. Sci. 283(2012), 367-373.
[9] M. J. Saad, N. Kumaresan and Kuru Ratnavelu, Oscillation Criterion for Second Order Nonlinear Equations With Alternating Coefficients, Amer. Published in Inst. of Phys. (2013).
[10] M. J. Saad, Ambarka A. Salhin and Fatima N. Ahmed, Oscillatory Behaviour Of second Order Nonlinear Differential Equations, International Journal Of Multidisciplinary Sciences and Advanced Technology. 1(2021), p. 565-571.
[11] P. Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10 (1965), p. 439-441.
[12] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), p. 115-117.
[13] C. C. Yeh, Oscillation theorems for nonlinear second order differential equations with damped term, Proc. Amer. Math. Soc. 84 (1982), p. 397-402.

	Journal of Educational ISSN: 2011-421X Arcif Q3	1.5

الصفحة	اسم الباحث	عنوان البحث	ت,
25-3	زهرة المهـي أبوراس فاطمة أحمد قناو	النسرّب الاراسي لاي طلاب الجامعات	1
43-26	علي فرج جامد فاطمة جبريل القايد	استعمالات الأرض اللزراعية في منطقة سوق الخمس	2
57-44	ابتسام عبد السلام كشيب	تأثير صناعة الإسمنت على البيئة مصنع إسمنت لبدة نموذجاً دراسة في الجغر افية الصناعي	3
84-58	عطية صالح علي الربيقي خالد رمضان الجربوع منصور علي سالم ظليفة	مفهوم الشعر عند نقاد القرن الرابع الهجري	4
106-85	فتحية علي جعفر أمنة محمد العكاشي ربيعة عثمان عبد الجليل	جودة الحياة لدى طلبة كلية التزبية بالخمس	5
128-107	Ebtisam Ali Haribash A.A.H. Abd EL-Mwla	An Active-Set Line-Search Algorithm for Solving MultiObjective Transportation Problem	6
140-129	مفنّاح سالم ثبوت	آليات بناء النص عند بدر شاكر السياب قر اءة في قصيدة تموز جيكور	7
155-141	مفتاح ميلاد الهريف جمعة عبد الحميد شنيب	الجرائم الالكترونية	8
176-156	Suad H. Abu-Janah	On the fine spectrum of the generalized difference over the Hahn sequence space $\boldsymbol{B}(\boldsymbol{r}, \boldsymbol{s}) \quad$ operator h	9
201-177	فوزية محمد الحوات سالمة محمد ضو	دراسة تأثير النضاد الكيميائي Allelopathy لمستخلصات بعض النجاتات Triticum aestivum L. الطبية على نسبة الانبات ونمو نبات القمح	10
219-202	سليمة محمد خضر	الأعداد الضبابية	11
240-220	S. M. Amsheri N. A. Abouthfeerah	On a certain class of $\boldsymbol{p}_{\text {-valent functions }}$ with negative coefficients	12
241-253	Abdul Hamid Alashhab	L'écriture de la violence dans la littérature africaine et plus précisément dans le théâtre Ivoirien Mhoi-Ceul comédie en 5 tableaux de Bernard B. Dadié	13
254-265	Shibani K. A. Zaggout F. N	Electronic Specific Heat of Multi Levels Superconductors Based on the BCS Theory	14

	مجــلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثير العربي 20

266-301	خالد رمضان محمد الجربوع عطية صالح علي الربيقي	أغراض الشعر المستجدة في العصر العباسي	15
302-314	M. J. Saad, N. Kumaresan Kuru Ratnavelu	Oscillation Criterion for Second Order Nonlinear Differential Equations	16
315-336	صالح عبد السلام الكيلاني ساره مفتاح الزني فـدو ظليل سالم	الققم الجمالية لفن الفسيفساء عند	17
337-358	عبدالمنعم امحمد سالم	مفهوم السلطة عند المعتزلة وإِوان الصفاء	18
359-377	أسماء حامد عبدالحفظ اعليجه	مستوى الوعى البيئي ودور بعض القيم الاجتماعية في رفعه لدى عينّ لـينة من طلاب كلية الآداب الو اقعة داخل نطاق مدينة الخمس.	19
378-399	بنور ميلاد عمر العماري	المؤسسات التعليمية ودورها في الو قاية من الانحر الت والجريمة	20
400-405	Mohammed Ebraheem Attaweel Abdulah Matug Lahwal	Application of Sawi Transform for Solving Systems of Volterra Integral Equations and Systems of Volterra Integro-differential Equations	21
406-434	Eman Fathullah Abusteen	The perspectives of Second Year Students At Faculty of Education in EL-Mergib University towards Implementing of Communicative Approach to overcome the Most Common Challenges In Learning Speaking Skill	22
435-446	Huda Aldweby Amal El-Aloul	Sufficient Conditions of Bounded Radius Rotations for Two Integral Operators Defined by q-Analogue of Ruscheweyh Operator	23
447-485	سعاد مفنّاح أحمد مرجان	مستوى الوعي بمخاطر النتلوث البيئي لاى معلمي المرحلة الثانوية بمدينة الخمس	24
486-494	Hisham Zawam Rashdi Mohammed E. Attaweel	A New Application of Sawi Transform for Solving Ordinary differential equations with Variable Coefficients	25
495-500	محمد على أبو النور فر ج مصطفى الهـار بشير على الطيب	استخدام التحليل الإحصائي لدر اسة العلاقة بين أنظمة الري وكمية المياه المستهكة بمنطقة سوق الخميس - الخس	26
501-511	نرجس ابر اهيم محمد	النقييم المنهجي للمو اد الرياضية و الاحصائية نسبة الى المو اد التخصصية لكلوم الحاسوب	27
512-536	بشري محمد الهيلي حنان سعيد العوراني عفاف محمد بالحاج	طرق التزبية الحدبثة للأطفال	28
537-548	ضو محمد عبد الهادي فاروق مصطفى ايور اوي زهرة صبحي سعيد نجاح عمران المهوي	در اسة للحد من الثلوت الكهرومغناطيسي باستخدام مركب ثاني أكسيد الحديد مع بوليمر حضض الاكتيك	29

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

549-563	Ali ahmed baraka Abobaker m albaboh Abdussalam a alashhab	Cloud Computing Prototype for Libya Higher Education Institutions: Concept, Benefits and Challenges	30
564-568	Muftah B. Eldeeb	Euphemism in Arabic Language: The case with Death Expressions	31
569-584	Omar Ismail Elhasadi Mohammed Saleh Alsayd Elhadi A. A. Maree	Conjugate Newton's Method for a Polynomial of degree $\mathrm{m}+1$	32
585-608	آمنة سالم عبد القادرقدروة آلاء عبدالسلام محمد سويسي ليلى علي محمد الجاعوك	الصحد النفسية وعلافتها بتفير الذات لدى عينة من طلبة كلية الآداب والعلوم / مسلانه	33
609-625	نجاة سالم عبد اله زريق	المساندة الاجتماعية لاى عبنة من المعلمات بمدينة تصر الأخبار وعلاقتها بيعض المتغيرات الديموغر افية "در اسة ميدانية"	34
626-640	محمد سالم ميلاد العابر	"أي" بين الآسمية و الفطلية عاملة ومعمولة	35
641-659	إٕر اهيم فر فج الحويج	التمييز في القر آن الكريم سورة الكهف ألْموذجا	36
660-682	عبد السلام ميلاد المركز رجعة سعيد الجنقاوي	المو ارد الطبيعة و البشرية السياحية بدينة طر ابلس (بلييا)	37
683-693	Ibrahim A. Saleh Abdelnaser S. Saleh Youssif S M Elzawiei Farag Gait Boukhrais	Influence of Hydrogen content on structural and optical properties of doped nano-a-Si:H/a-Ge: H multilayers used in solar cells	38
694-720	فر ج رمضان مفتاح الثبيلي	أجوبة الشيخ علي بن أبي بكر الحضيري $\text { (ت:1061 هـ - } 1650 \text { م) }$	39
721-736	علي خليفة محمد أجويلي	مفهوم الهوية عند محمد أركون	40
737-742	Mahmoud Ahmed Shaktour	Current -mode Kerwin, Huelsman and Newcomb (KHN) By using CDTA	41
743-772	Salem Msauad Adrugi Tareg Abdusalam Elawaj Milad Mohamed Alhwat	University Students' Attitudes towards Blended Learning in Libya: Empirical Study	42
773-783	Alhusein M. Ezarzah Aisha S. M. Amer Adel D. El werfalyi Khalil Salem Abulsba Mufidah Alarabi Zagloom	Integrated Protected Areas	43
784-793	عبد الرحمن المهاي ابومنجل	المظاهر ات بين المانعين والمجوزين	44
794-817	رضا القذفي بشير الاسمر	تنرجيحات الامام الباجي من خلال كتابه المنتقي " من باب العناقة و الو لاء الىى كتاب الجامع	45

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثر العربد 20

$818-829$	Fadela M. Elzalet Sami A. S. Noba omar M. A. kaboukah	IDENTIFICATION THE OPTIMUM PRODUCTION PROCESS OF THE HYDROGEN GAS	46
830			

