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Abstract 

     In this paper we introduce a new class of  -valent starlike functions with negative 

coefficients defined by fractional derivative operator. We obtain coefficient bounds, 

distortion inequalities, Hadamard product, linear combinations and inclusion theorems. Also, 

we find extreme points and radii of close-to-convexity, starlikeness and convexity for this 

class. The integral preserving properties and integral means inequalities are also determined. 

Keywords: multivalent ( -valent) functions, starlike functions, convex functions, close-to-

convex functions, fractional derivatives, Hadamard product, integral means. 

 

1- Introduction and Definitions 

     Let      denote the class of functions defined by 

            ∑    

 

   

                                                                 

which are analytic and multivalent (or  -valent) in the open unit disk   {  | |   }. We 

write       . If   and   are analytic in  , we say that   is subordinate to  , written 

symbolically as     or              , if there exists a Schwarz function       which 

is analytic in   with        and |    |    such that       (    )    . 

     A function           is said to be   -valent starlike of order    if      satisfies the 

condition 

     {
      

    
}                                                             

We denote by         the class of all such functions. A function           is said to be  

 -valent convex of order    if      satisfies the condition 
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       {  
       

     
}                                                    

Let        denote the class of all those functions which are  -valent convex of order  .        

The class         was introduced by Patil and Thakare [6], and the class        was 

introduced by Owa [5].  

     Let      denote the subclass of      consisting of functions of the form 

        ∑    

 

   

           (               )                            

We denote by         and        the classes obtained by taking intersections, respectively, 

of the classes         and        with the class     . The classes         and        

were introduced by Owa [5]. In particular, the classes               and             

when     were studied by Silverman [8]. 

     Let the functions               be defined by 

            ∑          
    

 

   

          (             )                          

The Hadmard product of        and       is defined by 

                  ∑                 
    

 

   

                                                            

Definition 1.1.[1,2,10]. Let      , and      , the fractional derivative operator     
     

 

is defined in terms of Gauss’s hypergeometric function     as follows 

    
     

     
 

  
(

    

      
∫        

 

 

       (              
 

 
)  ) 

(1.7) 

where      is analytic function in a simply- connected region of the  -plane containing the 

origin with the order        | |         where    max{     }     and the 

multiplicity of         is removed by requiring log      to be real when      .   

     We note that,     
     

       
            is the fractional derivative operator 

considered by Owa [4]. 

     The fractional derivative operator     
       

     of a function      in      is defined by 
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The operator     
       

     was studied by Amsheri and Zharkova [1]. (see also [10]).   

Recently, Zayed et al. [10] introduced the operator      
           

     of a function      in 

     for         { } and     and defined by: 

                          
           

         
       

      

                         
           

         
         

     

                           
       

      
 

 
(    

       
    )

 

 

and (in general),  

                        
           

         
         

(    
             

    )                                   

    ∑(
    

 
)
  

   

                
                            

where 

            
                

                  
                                           

     Motivated essentially by aforementioned works, we introduce a new class 

  
               of analytic and  -valent functions      belonging to the class      by using 

the operator     
           

     as follows: 

Definition 1.2. The function            is said to be in the class   
               if it 

satisfies   

 
  (    

           
    )

 

             
           

    
 

         

   
                                                  

For                                                    The 

condition (1.11) is equivalent to 



 
 

ويــتربــلة الــمج  
Journal of Educational 

ISSN: 2011- 421X  
Arcif Q3 

5.1معامل التأثير العربي   

02العدد   

 

222 http://tarbawej.elmergib.edu.ly                                                                                                           

    

 

|

|

 
  (    

           
    )

 

             
           

    
  

 
  (    

           
    )

 

             
           

    
     

|

|

                                                 

Easily we can deduce that,  

    
           

        ∑ (
    

 
)
  

   

                
      (           )         

where              is given by (1.10). We observe that,  

1- For        , the class   
                        (Selvaraj et al. [7]).  

2- For         and    , the class   
                        (Owa [5]). 

3- For         and      , the class   
                      (Silverman [8]). 

     In the present paper, we obtain coefficient bounds, distortion inequalities, Hadamard 

product, linear combinations and inclusion theorems for the functions belonging to the class 

  
              . Also, we find extreme points and radii of close-to-convexity, starlikeness 

and convexity for this class. Finally, we determine the integral means inequalities and a class- 

preserving integral operator of the form 

     (     )    
   

  
∫        

 

 

                                                   

     In order to prove our results in section 9 we shall need the following lemma.  

Lemma 1.3. [3].  If the functions      and      are analytic in   with          , then   

∫ |       |
 

  

 

   ∫ | (    )|
 

  

 

        (                )                        

 

2- Coefficient Bounds  

Theorem 2.1. Let the function      be defined by (1.4). Then      belongs to the class 

  
               if and only if   

∑ (
    

 
)
 

[         ]                

 

   

                            

where              is given by (1.10). 
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Proof. Since        
              , then 

   |

 
  (    

           
    )

 

 (             
           

    )

 
  (    

           
    )

 

       (             
           

    )
|                      

It follows from (2.2) that 

  {
∑ (

    
 )

 

           *(
   

 )   +      
  

   

       ∑ (
    

 )
 

           *(
   

 )         +        
   

}           

Choosing values of    on the real axis so that 

 

 
 (    

           
    )

 

             
           

    
 is real, and letting 

     through real axis, we have 

                 ∑ (
    

 
)
 

           [(
   

 
)   ]     

 

   

 

        ∑ (
    

 
)
 

           [(
   

 
)         ]     

 

   

    

which gives the desired assertion (2.1). Conversely, let the inequality (2.1) holds true and let 

| |   . Then we have 

|
 

 
 (    

           
    )

 

 (             
           

    )| 

                   |
 

 
 (    

           
    )

 

       (             
           

    )| 

  | ∑(
    

 
)
 

           [(
   

 
)   ]      

   

 

   

|                                                  

 |         ∑(
    

 
)
 

           [(
   

 
)         ]      

   

 

   

| 

  ∑(
    

 
)
 

[(
   

 
)    ]                

 

   

           

Hence by the maximum modulus theorem,        
                This completes the 

proof.  
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Corollary 2.2. Let the function      be defined by (1.4) be in the class    
              , 

then    

                   
      

(
    

 )
 

[         ]            

                                         

where              is given by (1.10). The result (2.3) is sharp for a function of the form: 

            
      

(
    

 )
 

[         ]            

                                    

Remark 1. Letting             and     in Theorem 2.1 and Corollary 2.2 

respectively, we obtain the results were proved by Silverman [8].  

     

3- Distortion Inequalities 

Theorem 3.1. Let          such that 

             (  
   

 
),                                          

Let the function      defined by (1.4) be in the class   
                Then  

|    |  | |  
                      

(
   

 )
 

[         ]              

 | |                          

|    |   | |  
                      

(
   

 )
 

[         ]              

| |                           

|     |    | |    
                      

(
   

 )
 

[         ]         

| |                                   

and 

|     |    | |    
                      

(
   

 )
 

[         ]         

| |                                   

for     . The estimates for |    | and |     | are sharp. 

Proof. We observe that the function             defined by (1.10) satisfy the 

inequality                                 , provided that    (  
   

 
). 
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Thereby, showing that             is non-decreasing. Thus under the conditions stated in 

(3.1), we have 

    
              

                
                                               

for        
              , in view of Theorem 2.1, we have 

   
(
   

 )
 

[         ]              

                
∑      

 

   

                                 

 ∑(
    

 
)
 

[         ]                

 

   

                                   

which gives 

          ∑      

 

   

  
                      

(
   

 )
 

[         ]              

                     

 Consequently, we obtain 

 |    |   | |  | |   ∑     

 

   

                                                                                              

 | |  
                      

(
   

 )
 

[         ]              

 | |                

and 

|    |   | |  | |   ∑     

 

   

                                                                                               

 | |  
                      

(
   

 )
 

[         ]              

 | |               

which prove the assertions (3.2) and (3.3) of Theorem 3.1. Furthermore, from Theorem 2.1, 

we note that 

∑          

 

   

  
                      

(
   

 )
 

[         ]         

                  

Thus, we have 
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        |     |    | |    | | ∑         

 

   

                                                      

and  

   |     |    | |    | | ∑           

 

   

                                                    

On using (3.12), (3.13) and (3.11), we arrive at the desired results (3.4) and (3.5). 

     Finally, we can prove that the estimates for |    | and |     | are sharp by taking the 

function 

          
                      

(
   

 )
 

[         ]              

                            

Corollary 3.2. Let the function      be defined by (1.4) be in the class    
              . 

Then      is included in a disk with centre at the origin and radius     given by 

            
                      

(
   

 )
 

[         ]              

                      

      is included in a disk with centre at the origin and radius    given by 

            
                      

(
   

 )
 

[         ]         

                                    

 

4-  Hadamard Product  

Theorem 4.1. Let                (  
   

 
)                      

               and     , and let the functions              defined by (1.5) be in the 

class    
              .Then              

               where 

        {
                 

              
}                                                              

where 

     (
    

 
)
 

[         ]                                                         

Proof. It suffices to prove that 
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   ∑
(
    

 )
 

[         ]           

      
                 

 

   

                         

Since  

∑
(
    

 )
 

[         ]           

      
         

 

   

                                     

and 

    ∑
(
    

 )
 

[         ]           

      
           

 

   

                                   

By the Cauchy – Schwarz inequality, we have 

   ∑
(
    

 )
 

[         ]           

      
    √                

 

   

                   

Thus, we need to find the largest   such that   

                   ∑
(
    

 )
 

[         ]           

      
                  

 

   

     

   ∑
(
    

 )
 

[         ]           

      
    √              

 

   

            

or, equivalently, that 

          √                
[         ]     

[         ]     
                                                     

In view of (4.6), it is sufficient to find the largest   such that  

      

(
    

 )
 

[         ]           

 
[         ]     

[         ]     
                          

The inequality (4.9) yields  

     {
                 

              
}                                                                           

where 
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     (
    

 
)
 

[         ]                         

and this the inequality gives the required result. 

Corollary 4.2. For               as Theorem 4.1, we have  

        ∑√             

 

   

                                                               

belongs to the class    
               .  

Proof. The result follows from the inequality (4.6). 

Theorem 4.3. Let the function      defined by (1.4) be in the class   
              . Also let 

        ∑       
    

 

   

             (|     |       )                                    

Then            
                

Proof. Since 

∑(
    

 
)
 

[         ]            |         |

 

   

 

 ∑ (
    

 
)
 

[         ]                |     |

 

   

 

 ∑(
    

 
)
 

[         ]                

 

   

            

                                                                                              

By Theorem 2.1, it follows that 

           
                

   

 

5- Linear Combinations and Inclusion Theorems 

     We shall prove that the class   
               is closed under arithmetic mean and under 

convex linear combinations. 

Theorem 5.1. Let the functions                   defined by (1.5) be in the class   

  
              . Then the function   
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∑(∑      

 

   

)

 

   

                                                                   

is also in the class    
              .  

Proof. Since         
              , by using Theorem 2.1, we have  

∑
(
    

 )
 

[         ]           

      
        

 

   

                             

so,  

∑
(
    

 )
 

[         ]           

      
( 

 

 
∑      

 

   

) 

 

   

   

 
 

 
∑ ∑

(
    

 )
 

[         ]           

      
         

 

   

 

   

                

which shows that        
                and the proof of Theorem 5.1 is completed.  

Theorem 5.2. Let                (  
   

 
)                      

               and       and let the functions              defined by (1.5) be in 

the class    
              . Then the function   

             ∑       
         

 

 

   

                                                

belongs to the class    
              ,where  

        {
                  

               
}                                                  

Where      given by (4.2).  

Proof. By virtue of Theorem 2.1, we obtain 

∑ {
(
    

 )
 

[         ]           

      
}
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     {∑
(
    

 )
 

[         ]           

      
        

 

   

}

 

                   

and 

∑ {
(
    

 )
 

[         ]           

      
}

 

        
 

 

   

                                           

  {∑
(
    

 )
 

[         ]           

      
        

 

   

}

 

                     

It follows from (5.6) and (5.7) that  

   ∑
 

 
{
(
    

 )
 

[         ]           

      
}

 
 

   

       
        

                      

Therefore, we need to find the largest   such that 

  ∑
(
    

 )
 

[         ]           

      
         

        
      

 

   

                         

Thus, it is sufficient to show that 

                  
 (
    

 )
 

[         ]           

      
 

      
 

 
{
(
    

 )
 

[         ]           

      
}

 

                       

The inequality (5.10) yields 

             {
                  

               
}                                                              

where      given by (4.2), and this inequality gives the required result. 

 

Theorem 5.3. The class   
               is convex. 
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Proof. Suppose that the functions              defined by (1.5) are in the 

class    
                Then it is sufficient to show that the function 

                                                                                     

or, equivalently 

        ∑{                   }  
   

 

   

                                  

is also in the class    
                

     Now, from our hypothesis and Theorem 2.1, it follows readily that 

∑(
    

 
)
 

[         ]             (                   )

 

   

 

                                                                                   

which evidently proves Theorem 5.3. 

  

6- Extreme Points 

Theorem 6.1. Let  

                                                                                                  

and 

           
      

(
    

 )
 

[         ]            

                                      

Then          
               if and only if it can be expressed in the form: 

         ∑     

 

   

                                                                         

where 

                        ∑     

 

   

                                                          

Proof. Let  

     ∑     

 

   

                                                                                



 
 

ويــتربــلة الــمج  
Journal of Educational 

ISSN: 2011- 421X  
Arcif Q3 

5.1معامل التأثير العربي   

02العدد   

 

222 http://tarbawej.elmergib.edu.ly                                                                                                           

    

 

          ∑
      

(
    

 )
 

[         ]            

       
   

 

   

          

Then, in view of (6.4), it follows that 

∑
(
    

 )
 

[         ]            

      
{

      

(
    

 )
 

[         ]            

    }

 

   

 

                   ∑     

 

   

                                                                            

So, by Theorem 2.1, the function        belongs to the class   
                

     Conversely, let the function      defined by (1.4) belongs to the class    
              , 

then 

       
      

(
    

 
)
 

[         ]           

                                            

Setting  

     
(
    

 )
 

[         ]           

      
                                         

and  

                        ∑     

 

   

                                                                 

we can see that      can be expressed in the form (6.3). This completes the proof of Theorem 

6.1.                                                                                                                                                                  

Corollary  6.2. The extreme points of the class   
               are the functions        and  

         given by (6.1) and (6.2) respectively. 

 

7- Radii of Close-to-convexity, Starlikeness  and Convexity  

Theorem 7.1. Let the function      defined by (1.4) be in the class   
              . Then 

     is  -valently close-to-convex of order            in the disk  | |      where 
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                 {
     (

    
 )

 

[         ]           

           
}

 
 ⁄

                

and              is given by (1.10). The result is sharp with the extermal function      

given by (2.4). 

Proof . It suffices to show that  

      |
     

    
  |               | |                                                

Indeed we have  

         |
     

    
  |  ∑          | |

 

 

   

                                            

Hence (7.2) is true if  

    ∑          | |
 

 

   

         

or 

                ∑
     

     
     | |

 

 

   

                                                                 

By Theorem 2.1, (7.4) is true if  

      
     

     
| |   

(
    

 )
 

[         ]           

      
                               

Solving (7.5) for | |, we get the desired result (7.1).                       

Theorem 7.2. Let the function      defined by (1.4) be in the class   
              . Then 

     is  -valently starlike  of order            in the disk | |     , where 

                 {
     (

    
 )

 

[         ]           

             
}

 
 ⁄

                   

and              given by (1.10). The result is sharp with the extermal function      given 

by (2.4). 

Proof. It suffices to show that 
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       |
       

    
  |                | |                                                          

Indeed we have  

|
      

    
  |  |

 ∑       
  

   

  ∑        
   

|   
∑      | |

  
   

  ∑     | | 
 
   

                   

Hence (7.7) is true if  

   ∑       | |
 

 

   

       ∑          | |
  

 

   

                              

that is, if 

   ∑
       

     
     | |

 

 

   

                                                                   

By Theorem 2.1, (7.10) is true if  

       

     
 | |  

(
    

 )
 

[         ]           

      
                                        

Solving (7.11) for  | | , we get the desired result (7.6).   

Theorem 7.3. Let the function      defined by (1.4) be in the class    
                Then 

     is  -valently convex  of order            in the disk | |     , where 

         {
     (

    
 )

 

[         ]           

                 
}

 
 ⁄

                  

and              given by (1.10). The result is sharp with the extermal function      given 

by (2.4). 

Proof. It suffices to show that 

    |  
        

     
  |            | |                                                      

Indeed we have  

|  
        

     
  |  |

 ∑             
  

   

  ∑               
   

|   
∑            | |

  
   

  ∑           | | 
 
   

            

   Hence (7.13) is true if  
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   ∑       

 

   

     | |
         ∑               | |

 

 

   

                   

or  

   ∑
            

      
     | |

   

 

   

                                                                          

By Theorem 2.1, (7.16) is true if  

            

     
 | |  

(
    

 )
 

[         ]           

     
                     

Solving (7.17) for  | |, we get the desired result (7.12).  

 

8- Class-Preserving Integral Operators 

     We prove that the integral operator      defined by (1.14) is indeed a class- preserving 

operator for the class    
                

Theorem 8.1. Let the function      defined by (1.4) be in the class   
                Also let 

    . Then the function      defined by (1.14)  is also in the class   
                

 Proof . from (1.14)  and (1.4), it easily seen that  

          ∑      
   

 

   

                                                                           

where 

     (
   

     
)                                                                                 

Since       we have 

                                                                                               

which, in view of Theorem 2.1, immediately yields Theorem 8.1. 

Remark 2. Letting       in Theorem 8.1, we obtain the following result. 

Corollary 8.2. Let the function      defined by (1.4) be in the class    
                Then 

         ∫
    

  

 

 

                                                                              

is also in the class    
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Theorem 8.3. Let     . Also let      be in class   
              . Then the function 

     given by (1.14) is  -valent in the disk | |     where  

         {
(
    

 )
 

     [         ]           

                 
}

 
 ⁄

          

Proof. Assuming that 

        ∑       
    

 

   

             (          )                              

from (1.14), we get 

      
    

   

 

  
(      )       ∑(

     

   
)       

   

 

   

                              

In order to prove the result, it suffices to show that 

|
     

    
  |                                     | |                                                  

Indeed we have 

               |
     

    
  |  | ∑     (

     

   
)     

 

 

   

|          

          ∑     (
     

   
)     | |

  

 

   

                                          

which yields the desired inequality in (8.8), provided that 

∑
            

      
    | |

 

 

   

                                                              

But, since the function      defined by (8.6) is in the class   
                Theorem 2.1 

gives us 

∑
(
    

 )
 

[         ]           

      

 

   

                                          

Thus the inequality (8.9), and hence also the inequality (8.8), will hold true if 

 
            

      
| |  

(
    

 )
 

[         ]           
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that is, if 

| |  {
(
    

 )
 

     [         ]           

                 
}

 
 ⁄

       

which leads us precisely to the main assertion of Theorem 8.3.  

 

9- Integral Means Inequalities 

     Applying Lemma 1.3, we prove the following theorem. 

 Theorem 9.1. Let                      (  
   

 
)                 

                    and     . If        
                then for       and 

         , we have 

∫ |       |
 

  

 

   ∫ |    (  
  )|

 
  

 

                                                  

where  

           
      

(
   

 )
 

[         ]            

                                   

and              given by (1.10). 

Proof. Let      of the form (1.4) and         of the form (9.2), then we must show that  

         ∫ |  ∑     
 

 

   

|

 
  

 

   ∫ |  
      

(
   

 )
 

[         ]            

 |

 

  

 

    

By Lemma 1.3, it suffices to show that 

  ∑     
 

 

   

   
      

(
   

 )
 

[         ]            

       

Setting 

  ∑     
 

 

   

   
      

(
   

 )
 

[         ]            

                       

From (9.3) and (2.1), we obtain 
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                 |    |  |∑
(
   

 )
 

[         ]            

      
     

 

 

   

|      

              | |∑
(
    

 )
 

[         ]            

      
    

 

   

 | |      

This completes the proof of the Theorem 9.1. 

Remark 3. Letting             and    , in Theorem 9.1, we get the integral 

means inequality for the class       . 

Corollary 9.2. Let    . If           , then for       and          , we have 

∫ |       |
 

  

 

   ∫ |  (  
  )|

 
  

 

                                                      

where  

        
   

   
                                                                                       

Remark 4. If we take     in       of Corollary 9.2, we obtain the result proved by 

Silverman [9]. 
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