Differentiable and analyticFunction spaces

N. M.BEN. Youisf
University of Tripoli

Abstract

: In this paper we shall prove a theorem which is very important for the structure of

 complete analytic vector fields, and some lemmas. .Keywords: differentiable, analytic function, analytical mapping and the class of C^{∞} differentiable functions.

1- Introduction :

We know from the definition of differentiable function of class C^{∞} that we can expand it in power series .

For (real) analytic in single variable are necessary but not sufficient condition that a function be (real), analytic that can be expanded in a power series at each point a $€ U$ where U is an open set of R^{N} is that to be in $C^{\infty}(u)$ if f is real analytic on U we say that $\left\{\mathrm{f} € \mathrm{C}^{\omega}(\mathrm{u})\right\}$.

A although knowledge of analytic function is helpful, since C^{ω} implies C^{∞} _ to know that any linear function $f(x)=\sum a_{i} x^{i}$, or polynomial $p\left(x^{1}, \ldots, x^{n}\right)$

N variables is analytic function on $\mathrm{u}=\mathrm{R}^{\mathrm{n}}$, the some is true for any quotient of polynomials (rational functions) if we exclude from the domain the points at which the denominator is zero.

Thus, for example a determinant is an analytic function of it's entries and, if we exclude nxn matrices of determinant zero ,(which have no inverse)then each entry in the invers A^{-1} of Matrix a is an analytic and (hence C^{∞}) function of the entries in matrix A .

Mapping:

Let R^{m} and R^{n} denote two Euclidean spaces of m and n dimension, respectively . Let O and O^{\prime} be open subsets, $O \subset R^{m}, O^{\prime} \subset R^{n}$ and suppose φ is mapping of O in to O^{\prime}.

هجلة العلوم الإنسانية والتطبيقية Gournal of Humanitarian and Applied Sciences

The mapping, φ is differentiable if the coordinates $y_{j}(\emptyset(\mathrm{P}))$ of $\varnothing(p)$ are diffentiable (that is , indefinitely differentiable)functions of the coordinates $x_{i}(p)$, $\mathrm{p} \in \mathrm{o}$.

The mapping φ is called analytic if for each point $p \in o$ there exists a nigh- bor hood U of P and n power series $p j(1 \leq j \leq n)$.
m variables such that $y_{j}(\varphi(\mathrm{q}))=\mathrm{P}_{\mathrm{j}}\left(\mathrm{x}_{1}(\mathrm{q})-\mathrm{x}_{1}(\mathrm{p}), . . \mid \ldots, \mathrm{x}_{\mathrm{m}}(\mathrm{q})-\mathrm{X}_{\mathrm{m}}(\mathrm{P})\right)$,
$(1 \leq j \leq n)$ for $q \in U$.
A differentiable mapping $\emptyset: 0 \quad \mathcal{Q}^{\prime}$ is called a diffeomorphism of O on to 0^{\prime} if $\varphi(\mathrm{O})=0^{\prime}, \emptyset$ is one - to- one and inverse mapping \emptyset^{-1} is differentiable.

When $\mathrm{n}=1$ it is customary to replace term mapping by term function.
An analytic function on R^{m} which vanishes on an open set is identically zero.
For differentiable function the situation is completely different .
In fact, if A and B are disjoint Sub sets of R^{m}, A compact and B closed then there exists differentiable function \emptyset which is identically 1 on A and identically 0 on B.

Example: let $0<\mathrm{a}<\mathrm{b}$ and consider the function f on R defined by
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\exp \left(\frac{1}{x-b}-\frac{1}{x-a}\right) \text { if } a<x<b \\ \text { otherwise }\end{array}\right.$
Then f is differentiable and the same holds for the function $\mathrm{F}(\mathrm{x})=\frac{\int_{x}^{b} f(t) d t}{\int_{a}^{b} f(t) d t}$
Which has value 1 for $\mathrm{x} \leq \mathrm{a}$ and 0 for $\mathrm{x} \geq \mathrm{b}$.
Example: the function Ψ on R^{m} given by
$\Psi\left(x_{1}, \ldots ., x_{m}\right)=f\left(x^{2}{ }_{1}+\ldots . .+x^{2}\right)$ is differentiable and has values $\mathbf{1}$ for
$\mathrm{x}^{2}{ }_{1}+\ldots . .+\mathrm{xm}^{2} \leq$ aand O zero for $\mathrm{x}_{1}{ }^{2}+\ldots \ldots .+\mathrm{x}_{\mathrm{m}}{ }^{2} \geq \mathrm{b}$.
let S and S^{\prime} be two concentric spheres in R^{m}.
S' lying inside S. starting from Ψ we can by means of transfrom of R^{m} constarcut a differential function on R^{m}.

With value in interiors' and value 0 outside S .
Turning now to the sets A and B we can owing to the compactness of A , find finitely many spheres $\operatorname{Si}(1 \leq i \leq n)$ such that the corresponding open balls Bi ($1 \leq$
$\mathrm{i} \leq \mathrm{n}$) form covering $\mathrm{A}\left(\right.$ that is, $\left.\mathrm{A} \subset \mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Bi}\right)$ and such that the closed ball $\overline{\mathrm{Bl}}(1$ $\leq \mathrm{i} \leq \mathrm{n}$) do not intersect B.

Each sphere Si can be shrunk to concentric sphere S_{i}^{\prime}, such that the corresponding open balls $\mathrm{B}_{\mathrm{i}}^{\prime}$ still covering of A .

Now let Ψ_{i} be differentiable function on R^{m} which is identically1 on B_{i}^{\prime} an identically 0 in the complement of Bi .

Then the function :
$\Psi=1-\left(1-\Psi_{1}\right)\left(1-\Psi_{2}\right) \ldots \ldots\left(1-\Psi_{\mathrm{n}}\right)$
Is differentiable function on R^{m} which identically 1 on A and identically 0 onB.
Function of class C^{∞} and real analytic function let us say that f of class C^{∞} if f is of class C^{q} for every q. If f is of class C^{∞} and $\lim _{q \rightarrow \infty} R_{q}(x)=0$, them in place of Taylor's.

Formula with remainder we may put the corresponding infinite series .
This infinite series is called the Taylor series for $\mathrm{f}(\mathrm{x})$ at x_{0}.
If K is convex subset of D and $\mathrm{x}_{0} \in \mathrm{~K}$ then the following is a sufficient condition that $f(x)$ be the sum of it's Taylor series for every $x \in k$.

Suppose that there is a positive number M whose qth .
Power bounds every qth-order partial derivative of f , namely, $\left|f_{i 1, i 2 \ldots \ldots}{ }^{(x)}\right| \leq \mathrm{M}$ for every $\mathrm{x} \in \mathrm{k}, \mathrm{q}=1,2, \ldots$, and $1 \leq \mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{q}} \leq \mathrm{n}$

Then $\mathrm{c}=\mathrm{m}^{\mathrm{q}}$ where $\left|R_{q}(x)\right| \leq c n^{q / 2}|h|^{q}$.
$\mathrm{h}=\mathrm{x}-\mathrm{x}_{0}$.
$\left|R_{q}(x)\right| \leq \frac{M^{q} n^{q / 2}|h|^{q}}{q!}=\frac{B^{q}}{q!}$ Where $\mathrm{B}=\mathrm{m} n^{1 / 2}|h|$.
Since $\frac{B^{q}}{q!} \longrightarrow$ as $\mathrm{q} \quad \infty \lim _{q-\infty} \mathrm{R}_{\mathrm{q}}(\mathrm{x})=0$ For every $\mathrm{x} \in \mathrm{k}$.
A function is called analytic if every $\mathrm{x}_{0} \in D$ has a neighborhood U_{xo} such that the Taylor series at to x_{0} converges to $\mathrm{f}(\mathrm{x})$ for every $\mathrm{x} \in$ Uxo .

We have proved the following: Let f be of Calls c^{oo}, and Suppose that every $\mathrm{x}_{0} \in$ D has a neighborhood U_{xo} in which an estimate $\left|f_{i 1, i 2}{ }^{(x)}\right| \leq \mathrm{M}^{\mathrm{q}}$ holds Then f is analytic.

The positive number M may depend on X_{o} and on radius of U_{xo}.

مجلة العلوم الإنسانية والتطبيقية Journal of Humanitarian and Applied Sciences

2- OUR main result

2.1 proposition the function f:iR R defend on R by

$$
\mathrm{f}(\mathrm{~s})=\left\{\begin{array}{c}
0, s \leq 0 \\
\exp (-1 \backslash s), s>0
\end{array} \quad \text { is a } \mathrm{C}^{\infty} \text { function } .\right.
$$

Proof : Assume that, for some integer n the nth derivative of f is defined $f^{(n)}(s)$ $=\left\{\begin{array}{l}\exp \left(\frac{-1}{s}\right) \operatorname{pn}\left(\frac{1}{s}\right) \\ 0 \quad \text { if } s<0\end{array} \quad\right.$ where p_{n} is some polynomial if $\mathrm{s}>0$

By differentiation

$$
f^{(n+1)}(\mathrm{s})=\left\{\begin{array}{l}
\exp \left(\frac{-1}{s}\right) P_{n+1}\left(\frac{1}{s}\right) \text { if } s>0 \\
0 \quad \text { if } s<0
\end{array}\right.
$$

To find $f^{(\mathrm{n}+1)}(0)$ we use the fact that for any integer $\mathrm{N} \geq 0$.

$$
\lim _{s \rightarrow 0+}\left\{\frac{1}{s^{N}} \exp \left(\frac{-1}{s}\right)\right\}=0
$$

it follows that
$\lim _{s \rightarrow 0+}\left(\frac{f^{n}(s)-f^{n}(0)}{s}\right)=\lim _{s \rightarrow 0+}\left\{\frac{1}{s} \exp \left(\frac{-1}{s}\right) p n\left(\frac{1}{s}\right)\right\}=0$
$\lim _{s \rightarrow 0-}\left(\frac{f^{n}(s)-f^{n}(0)}{s}\right)=\lim _{s \rightarrow 0-}\left\{\frac{0}{s}\right\}=o$
This implies that $\mathrm{f}^{(\mathrm{n}+1)}(0)=0$.
Our original assumption is true when $\mathrm{n}=0$ and so, by induction, it is true for any positive integer n.f is there for a C^{∞} function. .

2.2 lemma :

Let $\mathrm{D}=\mathrm{E}^{1}$ and let $\mathrm{f}(\mathrm{x})=\left\{\exp \left(\frac{-1}{x^{2}}\right)\right.$ if $x>0$

$$
0 \text { if } x \leq o
$$

Show that, $\mathrm{f} \in \mathrm{C}^{\infty}\left(\mathrm{E}^{1}\right)$?
Proof: let us show that this function is of class C^{∞} and $f^{q}(0)=0$ for every $\mathrm{q}=1,2, \ldots \ldots \ldots, 0$ for $\mathrm{x} \neq 0$, the derivatives f^{q} (x) can be compute by elementary calculus, and each f^{q} continuous on $\mathrm{E}^{1}-\{0\}$.

It is at the point o where f must be examined. Now
 below.

هجلة العلوم الإنسانية والتطبيقية Gournal of Humanitarian and Applied Sciences

June 2021
If $\mathrm{x}<0$, then $\mathrm{f}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime \prime}(\mathrm{x})=0 \ldots \ldots .$.
With $\mathrm{k}=0, \exp \left(\frac{-1}{x^{2}}\right) \rightarrow 0$ as $\mathrm{x} \rightarrow \mathrm{o}^{+}$
Since $\mathrm{f}(0)=0, \mathrm{f}$ is continues. If $\mathrm{x}>0, \mathrm{f}^{\prime}(\mathrm{x})=\frac{2}{x^{3}} \exp \left(\frac{-1}{x^{2}}\right)=2 \mathrm{x} \cdot \frac{1}{x^{4}} \exp \left(\frac{-1}{x^{2}}\right)$
With $k=2, f^{\prime}(x) \rightarrow 0$ as $x \rightarrow 0^{+}$
There for $\lim _{x \rightarrow 0} \mathrm{f}^{\prime}(\mathrm{x})=0, \mathrm{f}^{\prime}(0)=0$ and f is of class c^{1}.
For each $(\mathrm{q}=2,3, \ldots \ldots),, f^{q}(x)$ is a polynomial in $1 / \mathrm{x}$ times $\exp \left(-1 / \mathrm{x}^{2}\right)$
For $\mathrm{x}>0$.
Hence $\lim _{x \rightarrow 0} f^{q}(x)=0$, by induction on $q, f^{q}(0)=0$
And $\mathrm{f} \in \mathrm{C}^{\mathrm{q}}$ for every q , thus $\mathrm{f} \in \mathrm{C}^{\infty}$. If we expand f by Taylor's formula about O , then $\mathrm{f}(\mathrm{x})=R_{q}(\mathrm{x})$ for every x .

If $\mathrm{x}>0$ the remaider $R_{q}(\mathrm{x})$ does not tend to O as $\mathrm{q} \rightarrow \infty$. Hence f is not an analytic function.

* $\lim _{k \rightarrow \infty} u^{k} \exp (-\mathrm{u})=0$ for each $\mathrm{k}=0,1,2, \ldots \ldots$. for each $\mathrm{u}<0$ let Ψ $(\mathrm{u})=u^{-k} \exp \mathrm{u}$, then $\Psi^{\prime}(\mathrm{u})=(\mathrm{u}-\mathrm{k}) u^{-k-1} \exp \mathrm{u}$.
$\Psi^{\prime \prime}=\left[u^{2}-2 k u+k(k+1)\right] u^{-k-2} \exp u$ The express in brackets has minimum when $\mathrm{u}=\mathrm{k}$ and is positive there .

Hence $\Psi^{\prime \prime}(\mathrm{u})>0$ for all $\mathrm{u}>\mathrm{o}$ Let us apply Taylor's formula to Ψ, with $\mathrm{q}=2$: $\Psi(\mathrm{u})=\Psi\left(\mathrm{u}_{0}\right)+\Psi^{\prime}\left(\mathrm{u}_{0}\right)\left(\mathrm{u}-\mathrm{u}_{0}\right)+\frac{1}{2} \Psi^{\prime \prime}(\mathrm{v})\left(\mathrm{u}-\mathrm{u}_{0}\right)^{2}$ with v between u and u_{0} Since $\Psi^{\prime \prime}(\mathrm{u})>0$.
$\Psi(\mathrm{u}) \geq \Psi\left(\mathrm{u}_{0}\right)+\Psi^{\prime}\left(\mathrm{u}_{0}\right)\left(\mathrm{u}-\mathrm{u}_{0}\right)$. If $\mathrm{u}_{0}>\mathrm{k}$, then $\Psi^{\prime}\left(\mathrm{u}_{0}\right)>0$ and the righthand side tends to $+\infty$ as $u \rightarrow \infty$.

Hence $\Psi(\mathrm{u}) \rightarrow+\infty$ and $\frac{1}{\Psi(u)} \rightarrow 0$ as $\mathrm{u} \rightarrow+\infty$. Which complete the proof.
2.3 Theorem. If $\mathrm{P}: \mathrm{IR}^{\mathrm{N}} \rightarrow \mathrm{IR}$ is a polynomial function and $0 \neq \Phi$:
$\mathrm{IR}^{\mathrm{k}} \rightarrow \mathrm{IR}$ is an affine function such that $\mathrm{P}(\mathrm{q})=0$ for the points q of the hyper plane $\left\{\mathrm{q} \in \operatorname{IR}^{\mathrm{N}}: \Phi(\mathrm{q})=0\right\}$ then Φ is a divisor of P in the sense that $\mathrm{P}=\Phi \mathrm{Q}$ with some (unique) polynomial $\mathrm{Q}: \mathrm{IR}^{\mathrm{N}} \rightarrow \mathrm{IR}$.

هجلة الحلوم الإنسانية والتطبيقية Gournal of Humanitarian and Applied Sciences

June 2021
Proof. Trivially, any two hyperplanes are affine images of each other.
In particular there is a one-to-one affine (i.e linear + constant) map- ping A : $\operatorname{IR}^{\mathrm{N}} \leftrightarrow \mathrm{IR}^{\mathrm{N}}$.such that $\left\{\mathrm{q} \in \operatorname{IR}^{\mathrm{N}}: \Phi(\mathrm{q})=0\right\}=\mathrm{A}\left(\left\{\mathrm{q} \in \mathrm{IR}^{\mathrm{N}}: \mathrm{X}_{1}(\mathrm{q})=0\right\}\right)$. Then $\mathrm{R}:=\mathrm{Po}$ A is a polynomial function such that $R(q)=0$ for the points of the hyper plane $\left\{q \in \operatorname{IR}^{N}: x_{1}(q)=0\right\}$.

We can write $\mathrm{R}=\sum_{k 1 \ldots \ldots \ldots k N=0}^{d} \quad \alpha_{K 1} \ldots \ldots \ldots, K_{N} x_{1}^{k 1} \ldots x_{N}^{k N}$ with a suitable finite family of coefficients $\alpha_{K 1 \ldots \ldots . . .}$ By the Taylor formula, $\alpha_{K 1 \ldots \ldots \ldots K_{N}}=$

R vanishes for $\mathrm{x}_{1}=0$. This means that $\mathrm{R}=\mathrm{X}_{1} \mathrm{R}_{0}$ with the polynomial Ro $:=\sum_{k 1=1}^{d} \sum_{k 2, \ldots \ldots k n=0}^{d} \quad x_{1}^{k 1-1} x_{2}^{k 2} \ldots \ldots \ldots \ldots x_{N}^{k N}$ By the same argument .

That is Φ is the sum of a linear functional with a constant.
Applied for the polynomial function Φ of degree $\mathrm{d}=1$ in place of R , we see that Φ o $A=\alpha \mathrm{x}_{1}$ for some constant (polynomial of degree 0) $\alpha \neq 0$.

That is $\Phi=\alpha \mathrm{x}_{1} \mathrm{o} \mathrm{A}^{-1}$. Therefore
$\mathrm{P}=\mathrm{Ro} \mathrm{A}^{-1}=\left[\mathrm{x}_{1} \mathrm{R}_{0}\right]$ o $\mathrm{A}^{-1}=\left(\mathrm{x}_{1}\right.$ o A $\left.{ }^{-1}\right)\left(\mathrm{R}_{0}\right.$ o A-1 $)=\Phi\left(\frac{1}{\alpha} \mathrm{R}_{0} \mathrm{o}^{-1}\right)$. a Since the inverse of an affine mapping is affine as well, the function
$\mathrm{Q}:=\left({ }_{\alpha}^{1} \mathrm{R}_{0} \mathrm{O} A^{-1}\right)$. is a polynomial which suits the statement of the theorem.
2.4 Theorem: Assume that $\mathrm{G} \subset R^{N}$ is an open connected set such that $\mathrm{G} \cap \mathrm{E}_{0} \neq \varnothing$, And let $\Phi: \mathrm{G} \rightarrow \mathrm{R}$ be an analytic function such that $\Phi(\mathrm{x})=0$ for all $x_{\in} \mathrm{G} \cap \mathrm{E}_{0}$, Then $\Phi(\mathrm{x})=\mathrm{x}_{1} \Psi(\mathrm{x})$ for some analytic function $\Psi: G \leftrightarrow \mathrm{R}$ where $\mathrm{x}_{1}=<\mathrm{x} . \mathrm{e}>$ and x $=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right) \in \mathrm{R}_{\mathrm{N}}$.
proof: let $E_{0}=\left\{\mathrm{p} \in R^{\mathrm{N}}: x_{1}(\mathrm{p})=0\right\}$, be a hyper-plane $\Phi(\mathrm{p})=0$ for $\mathrm{p} \in E_{0}$.

$$
\phi(p)=\sum_{k=1}^{\infty} \sum_{n_{1}+\cdots+n_{N}=k} a_{n_{1} \ldots n_{N}} x_{1}^{n 1}(p) \ldots x_{N}^{n_{N}}(p)
$$

$\mathrm{p} \in E_{o} \Longrightarrow \mathrm{X}_{1}(\mathrm{p})=0, \mathrm{x}_{1}{ }^{\mathrm{n1}}(\mathrm{p}) \ldots x_{N}^{n_{N}}(p)=0$, if $\mathrm{n}_{1}>0$
$0=\Phi(p)=\sum_{k=1}^{\infty} \sum_{n 2+\cdots+n_{N}=k} a_{n_{0} n_{2} \ldots n_{N} X_{2}^{n_{2}}(p) \ldots X_{N}^{n_{N}}(p) \text {, }}$
By assumption .

مجلة العلوم الإنسانية والتطبيقية Journal of Gumanitarian and Applied Sciences
$\mathrm{P}=\xi_{2} e_{2}+\cdots+\xi_{N} e_{N} \in E_{0}, \xi_{2}, \ldots, \xi_{N} \in R$, arbitrary.
$0=\Phi(p)=\sum_{n_{2}+\cdots+n_{N}=k} a_{0} n_{2} \ldots n_{N} \xi_{2}^{n_{2}} \ldots \xi_{N}^{n_{N}}$

$$
\begin{aligned}
& a_{0} n_{2} \ldots n_{N}=\frac{\partial^{n_{2}+\cdots+n_{N} \Phi\left(\xi_{2} e_{2}+\cdots+\xi_{N} e_{2}\right)}}{\partial_{x_{2} \ldots . . \partial_{x_{N}}^{n_{N}}}^{n_{2}!n_{N}!}}=0 . \quad a_{n_{2} \ldots n_{N}}=0, \forall n_{2}, \ldots, n_{N} . \\
& \Phi(p)=\sum_{k=1}^{\infty} \sum_{\substack{n_{1}+\cdots+n_{N}=k \\
n_{1}>0}} a_{n_{1} n_{2} \ldots n_{N}} \mathrm{x}_{1}^{\mathrm{n}_{1}}(p) \\
& =x_{1}(p) \sum_{k-1}^{\infty} \sum_{\substack{n_{1}+\cdots+n_{N}=k \\
n_{1}>0}} a_{n_{1} n_{2} \ldots n_{N}} X_{1}^{n_{1}^{-1}}(p) \ldots X_{N}^{n_{N}}(p) \\
& =X_{1}(p) \Psi(p) .
\end{aligned}
$$

$$
\Psi(p)=\sum_{I=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n_{2}+\cdots+n_{N}=I} a_{n_{1} n_{1} \ldots n_{N}} X_{1}^{m}(p) \ldots X_{N}^{n_{N}}(p) \text { with }
$$

$$
m=n_{1}-1 \text { and } L=k-1
$$

Remark:- we know that the function

$$
\varphi(t)= \begin{cases}e^{-1 / t} & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

Is infinitely differentiable, since also the function

$$
R^{m} \rightarrow R . \quad x \rightarrow 1-|x|^{2}
$$

Is smooth(i.e.. infinitely differentiable), it follows that the same is true for the composition of both functions, more precisely we have : $\mathrm{c}>0$ and

$$
\omega(x)=\left\{\begin{array}{lc}
c e^{1 /\left(|x|^{2}-1\right)} & \text { if }|x|<1 \\
0 & \text { if }|x| \geq 1
\end{array}\right.
$$

Then $\omega \in C^{\infty}\left(R^{m}, R\right), \omega \geq 0$ and

$$
\operatorname{supp}(\omega)=\overline{\left\{y \in R^{m} \mid \omega(y) \neq 0\right\}}=\bar{B}^{m}
$$

Then evidently we have

$$
\begin{gathered}
\omega_{\epsilon} \in C^{\infty}\left(R^{m}, R\right), \omega_{\epsilon} \geq 0 . \operatorname{supp}\left(\omega_{\epsilon}\right)=\epsilon \bar{B}^{m}, \\
\omega_{\epsilon}(-x)=\omega_{\epsilon}(x), \quad \forall x \in R^{m} \\
\int_{R^{m}} \omega_{\epsilon}(x) d x=1 .
\end{gathered}
$$

هجلة العلوه الإنسـانية والتطبيقية Journal of Humanitarian and Applied Sciences

Reference

1. N. M. BEN Yousif, Complete polynomial vector fields on Simplexes Electronic Journal of qualitative Theory of diffential Equation No. 5 2004: pp. (1-10).
2. ROBERT.J.walker.Algebraic curues, Princeton-New Jersey 1950.
3. Confor mal mapping, Zeer Niehari United States of America, Dover Publication. New York, NY 10014.
4. 4. K isaku Yosi da, Function analysis springer-verlag, Berlin Heidelberg New York 1980. 57
5.Tucory and Special Functions, Willand Miller, Jr. New Yorhand London, 1968.
1. Kosaku Yosida , Function analysis / 1980 .
2. Real and Complex Analysis ./ 1987.
3. an introduction to differentiable Manifolds and Riemannian Geometry/ 1975 .
