كأئيها يهت

مجلة علمية محكمة تصدر عز كلية التربية جامعة المرقب

العدد الثالث عشر يوليو 2018م

هيئـــة التحريـر

رئيس التحرير: د. عطية رمضان الكيلاني

مدير التحرير: د. على أحمد ميلاد

سكرتير المجلة: م. عبد السلام صالح بالحاج

المجلة ترحب بما يرد عليها من أبحاث وعلى استعداد لنشرها بعد التحكيم المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها كافة الأراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها يتحمل الباحث مسؤولية الأمانة العلمية وهو المسؤول عما ينشر له البحوث المقدمة للنشر لا ترد لأصحابها نشرت أو لم تنشر حفوظة للكلية حقوق الطبع محفوظة للكلية

بحوث العدد

- معالم منهج الإمام مالك في الاستدلال بأقوال الصحابة
 - أثر الخلوة الصحيحة بالمعقود عليها
- اختلاف الصيغ الصرفية في القراءات القرآنية الواردة في معجم تاج العروس وأثره في المعنى
 - اختلاف النحاة حول معنى (رُبًّ) وحرفيته
 - الإبداع البياني في المثل القرآني (نماذج مختارة)
 - كتاب "إبر اهيم رحومة الصاري 1918- 1972 ترجمته ونتاجه الأدبي" عرض ونقد
 - جهود الهادي الدالي في تحقيق مخطوط (السعادة الأبدية في التعريف بعلماء تتبكت البهية)
 - المقومات الطبيعية للسياحة ودورها في التنمية المحلية المستدامة في منطقة الخمس
 - مقومات السياحة التاريخية والاثرية في شمال شرق ليبيا
 - قراءة في نتائج مركز أورام مدينة مصراتة خلال الأعوام من 2013 وحتى 2015
 - دور الأسرة في ترسيخ القيم الأخلاقية لذي الأطفال بمرحلة الطفولة المتأخرة
 - علاقة الأخلاق بالسياسة عند الفارابي
 - جرائم العنف في المجتمع الليبي
- انعكاسات غياب الأمن على التتمية في المجتمع الليبي بعد ثورة السابع عشر من فبراير (2011م)
- الصمود النفسي وعلاقته بأساليب مواجهة الضغوط (النفسية الاجتماعية) لدى بعض من أمهات أطفال التوحد المترددات على مركز المقريف للتوحد بمدينة الخمس
 - إضافة قيد وتاثير المعاملات cj,aij
 - Comparitive Study of Vector Space Model Techniques in Information Retrieva for Arabic Language
 - Electrodeposition of semiconductors CuInTe2, Thin film solar cells
 - Further Proof on Fuzzy Sequences on Metric Spaces
 - The weibull distribution as mixture of exponential distributions
 - Expressive Treatment of Post-Traumatic Stress Disorder (PTSD) in Sexually Abused Children
 - English Students' Attitudes towards Studying English Poetry

مجلة التربوي

العدد 13

- Vocabulary knowledge and English reading obstacles faced by Libyan Undergraduate students at Elmergib University
- Difficulties Encountered by some Libyan Third Year Secondary School Students in Forming and Using English Future Tenses
- An Acoustic Study of Voice On Investigating the difference between the effects of inductive and deductive approach in teaching grammar for sixth grade students in Anahda primary School
- Using Data Mining techniques in tracking the students' behavior in the asynchronous elearning systems

مناف عبدالمحسن عبدالعزيز

كلية التربية- جامعة المرقب

ملخص البحث

في هذا البحث نهتم بدراسة التأثير الحاصل على مسالة برمجة خطية تحتوي قيدين بمتغيرين 2x2 عند اضافة قيد ثالث اليها لتصبح مسالة برمجة تحتوي ثلاثة قيود بمتغيرين وفي المسالة الجديدة سيتركز الاهتمام على (تغير الطرف الايمن من القيد الثالث) الذي سينتج عنه تكوين مناطق حل جديدة فيها نقاط قصوى منها ماتعود الى المسالة الاصلية ومنها ماهو جديد وفي هذه المناطق ومع كل نقطة من النقاط القصوى سنتعامل مع دوال هدف مختلفة لنرى تأثير دالة الهدف على اختيار الحل الامثل من بين جميع النقاط القصوى لكل منطقة من مناطق الحل. وسندرس تأثير تغير قيمة b_3 منطقة الحل وهل سنحصل على منطقة حل جديدة تختلف عن سابقاتها والى متى سيبقى القيد كقيد منطقة الحل الامثل وقيمة دالة الهدف عنده. وماهي قيمة الطرف الايمن القيد الجديد التي ستجعل هذا القيد يلامس احدى النقاط القصوى لمنطقة الحل الاصلية وماهي شكل المناطق التي ستتشكل حينها وماهو تأثير ذلك على الحل الأمثل. خاصة التأثير على منطقة الحل لهذه المسالة, وسندرس تأثير تغير قيمة b_3 على الحل الأمثل. خاصة التأثير على منطقة الحل لهذه المسالة وسندرس تأثير تغير قيمة b_3 على قيمة كل المثل النهائي للمسالة b_3 وهنا سنلاحظ ماهي المتغيرات الرئيسية عند هذا الحل واعظم قيمة كل متغير مقارنة بقيمته في الحل النهائي للمسالة الاصلية قبل التغير (هل بعد هذا التغير وماهي قيمة كل متغير مقارنة بقيمته في الحل النهائي المسالة الاصلية قبل التغير (هل التعتورات الماسية ألى النهائي المسالة الماسالة الاصلية قبل التغير (هل التعتورات قيمته ام قلت) وماهي قيمة دالة الهدف بعد هذا التغير .

اما الجزء الثاني من الدراسة فيخصص لدراسة تغير معاملات دالة الهدف وتاثير هذا التغير على الحل الامثل لنهائي للمسالة من حيث المتغيرات الرئيسية التي ستظهر في الحل الامثل النهائي. وماهي قيمة دالة الهدف بعد هذا التغير. وكما ذكرنا ففي هذه الدراسة سنعالج مسائل برمجة خطية اي المسائل التي تحتوي على ثلاث قيود وكل قيد يحتوي متغيرين للاستفادة من الطريقة البيانية التي تساعد كثيرا في الوصول الى توضيح الفكرة

1. المعالجة النظرية: ـ

1.1 تحليل الحساسية Sensitivity Analysis

توجد في مسألة البرمجة الخطية ثلاث مجاميع من العوامل هي

 (b_i) الحدود الثابتة في الجهة اليمنى من القيود (1

 (a_{ij}) المعاملات التكنولوجية

 (c_j) ومعاملات دالة الهدف

الدراسة التي تتعلق بالتغير الحاصل في الحل الأمثل نتيجة للتغير في احد العوامل المذكورة أعلاه تعرف بتحليل الحساسية ويهتم تحليل الحساسية أساسا بمدى العامل المعطى الذي فيه يبقى الحل الأصلي حلاً أمثلا بعد التغير إي أن المتغيرات الأساسية تبقى في الحل النهائي

سنهتم بدر اسة التغير الحاصل في

 (b_i) الطرف ألايمن من القيود (1

. (c_i) معاملات المتغير ات في دالة الهدف (2

هذه التغيرات يمكن ان تودي الى احدى الحالات التالية: -

1) الحل الأمثل يبقى بدون تغير

(اى ان المتغير ات الأساسية وقيمها تبقى بدون تغير).

2) المتغير ات الأساسية تبقى كما هي ولكن قيمها تتغير

3) المتغير ات الأساسية تتغير تماماً.

:-variation of the (c_i)

في الحل الامثل جميع المتباينات $(z_j-c_j\leq 0)$ لجميع قيم (j) متحققة وي الحل الامثل جميع المتباينات الغير اساسية في الحل النهائي ويجب ان يكون $z_i-(c_i+\Delta c_i)\leq 0$

 Δc_{j} ولتكن Δc_{j} ولتكن الكمية المضافة الى

وهذا يودي الى ان $z_j-c_j \leq \Delta c_j$ بشرط ان Δc_j ليس لها حد أعلى. ان أي تغير مناسب في (c_j) لايوثر على قيمة دالة الهدف لان $(x_j=0)$ بالنسبة للمتغير في الاساس النهائي فان Δc_j تؤثر على كل z_j التي ليست في الاساس لان

$$z_j - c_j = \sum_{i \in R} x_{ij} c_i - c_j \le 0$$

ليكن Δc_k فان الذي يحصل المتغير الاساسي فان فان ليكن

$$\sum_{i \in B} x_{ij} c_i + x_{kj} \Delta c_k - c_j \le 0$$

$$x_{kj} \Delta c_k \le -(z_j - c_j) \qquad \text{e}$$

 $x_{kj} > 0$ بالنسبة لكل

$$\Delta c_k \le \frac{-(z_j - c_j)}{x_{kj}}$$

$$x_{kj} < 0$$
 بالنسبة لكل

$$\Delta c_k \ge \frac{-(z_j - c_j)}{x_{kj}}$$

اذا

$$\max_{x_{kj}<0} \frac{-(z_j - c_j)}{x_{kj}} \le \Delta c_k \le \min_{x_{kj}>0} \frac{-(z_j - c_j)}{x_{kj}}$$

-: variation of the b_i عنیر ال -2

ان أي تغير في b_i يجب ان يكون بالمقدار الذي يحافظ على شرط الاتاحة للاساس. بالنسبة للحل الامثل $0 \ge B^{-1}b \ge 0$ وبالنسبة للتغير Δb_i , يجب ان نفرض ان b هو الطرف الايمن الجديد b

 b_{ii} الأساس وحيث ان $\bar{X}^0 = B^{-1} \bar{b} = (x_i + b_{ii} + \Delta b_i) \geq 0$ هو العنصر في السطر i والعمود j من i

بالنسبة ل
$$b_{ii}>0$$
 سيكون لدينا

$$\cdot \ \Delta b_i \geq rac{-x_i}{b_{ii}}$$
و بالنسبة ل $b_{ii} < 0$ سيكون لدينا

$$\Delta b_i \leq \frac{-x_i}{b_{ii}}$$

$$\max_{b_{ii}>0} \frac{-x_i}{b_{ii}} \le \Delta b_i \le \min_{b_{ii}<0} \frac{-x_i}{b_{ii}}$$

2.1 المعالجة العددية :-

ان الصيغة العامة للمسالة الاصلية:

$$Z = c_1 x_1 + c_2 x_2$$
 عظم

تحت القيود

$$\begin{vmatrix}
a_{11}x_1 + a_{12}x_2 \le b_1 \\
a_{21}x_1 + a_{22}x_2 \le b_2 \\
x_1 \ge 0, x_2 \ge 0
\end{vmatrix}$$
(1)

والصيغة العامة للمسالة بعد اضافة القيد :-

$$Z = c_1 x_1 + c_2 x_2$$
 عظم

تحت القيود

$$\begin{vmatrix}
a_{11}x_1 + a_{12}x_2 \le b_1 \\
a_{21}x_1 + a_{22}x_2 \le b_2 \\
a_{31}x_1 + a_{32}x_2 \ge b_3 \\
x_1 \ge 0, x_2 \ge 0
\end{vmatrix}$$
(2)

الجدول الاول للطريقة المبسطة للمسالة في (2) كالتالي

(الجدول 1)

\mathcal{X}_1	x_2	S_1	s_2	R	s ₃	b
1	4	1	О	0	О	12
4	3	0	1	О	О	16
a_{31}	$a_{_{32}}$	О	О	-1	1	b_3
$-a_{31}M-c_{1}$	$-a_{32}M-c_2\uparrow$	О	О	-M	О	О

 b_3 من الطريقة البيانية وجدنا انه عندما تتغير قيمة

ستتولد (مناطق حل متاح) تحتوي كل منها على نقاط طرفية من ضمنها نقاط المسالة الاصلية وهي ($G_1(S_2,0), H(p_1,p_2)$) من ضمنها نقاط المسالة الاصلية وهي ($H_1(t_1,t_2), H_2(n_1,n_2), G_3(S_3,0), F_3(0,V_3)$ ونقاط جديدة اخرى

وأحدى هذه النقاط ستكون الحل الامثل لهذه المنطقة

$$S_1 = b_1/a_{11},....,V_1 = b_1/a_{12}$$

$$S_2 = b_2/a_{21},....,V_2 = b_2/a_{22}$$

$$S_3 = b_3/a_{31},....,V_3 = b_3/a_{32}$$

 $H(p_1,p_2)$ ان الحل الامثل للمسالة الاصلية $H(p_1,p_2)$ هو النقطة

 $p_1 = 28/13,..., p_2 = 32/13, S_1 = 12,..., V_1 = 3$ عيث ان $S_2 = 4,..., V_2 = 16/3$

1.2.1 (تغير الطرف الايمن من القيد الثالث £):-

سندرس تاثير تغير قيمة b_3 في تكوين مناطق الحل المتاح وتاثير تغير ميل دالة الهدف في تحديد الحل الامثل في كل منطقة وسنستخدم الطريقة المبسطة في حل المسالة لايجاد قيمة دالة الهدف عند الحل الامثل عند كل تغير لميل دالة الهدف ومناطق الحلول المتاحة للمسالة (2) ستحتوي 7 نقاط قصوى

التى ذكرت سابقا

وفي الجدول التالى وجدنا الشرط الذي

((يجعل قيمة دالة الهدف عند النقطة (A))) اكبر من قيمة

دالة الهدف عند النقطة (B)

ومنها تبينت العلاقة بين ميل دالة الهدف وميل القيد الثالث (الجدول 2)

$Z_{\scriptscriptstyle A} > Z_{\scriptscriptstyle B}$ قيمة	الشرط
$Z_{V3} > Z_{H}$	$c_1/c_2 < (13b_3 - 32a_{32})/(28a_{32})$
$Z_{S3} > Z_{H}$	$c_1/c_2 > 32a_{31}/(13b_3 - 28a_{31})$
$Z_{S2} > Z_{V3}$	$c_1/c_2 > b_3/4.a_{32}$
$Z_{v_1} > Z_{v_3}$	$c_2(3a_{32}-b_3)/a_{32}>0$
$Z_{s2} > Z_{s3}$	$c_1 \cdot (4a_{31} - b3)/a_{31} > 0$
$Z_{H2} > Z_{V1}$	$c_1/c_2 > (12a_{32} + 7a_{31} - 4b_3)/(16a_{32} - 3b_3)$
$Z_{S2} > Z_{H1}$	$c_1/c_2 > (b_3 - 12a_{31})/(4b_3 - 16a_{31} - 8a_{32})$
$Z_{H2} > Z_{S2}$	$c_1/c_2 > (4b_3 - 16a_{31})/(12a_{31} - 3b_3)$

$Z_A > Z_B$	S3>H1	S3 > V3	H1>H2	H2 > V3	V3 > H1
الشرط	$\frac{c_1}{c_2} > \frac{a_{31}}{a_{32}}$		$\frac{c_1}{c_2} > \frac{a_{31}}{a_{32}}$	$\frac{c_1}{c_2} > \frac{a_{31}}{a_{32}}$	$\frac{c_1}{c_2} < \frac{a_{31}}{a_{32}}$

$Z_A > Z_B$	V1 > H1	V1>H	H1>H	H2 > H	S2>H
الشرط	$\frac{c_1}{c_2} < \frac{1}{4}$	$\frac{c_1}{c_2} < \frac{1}{4}$	$\frac{c_1}{c_2} > \frac{1}{4}$	$\frac{c_1}{c_2} > \frac{4}{3}$	$\frac{c_1}{c_2} > \frac{4}{3}$

$Z_A > Z_B$	V1>S2	S3 > V1	H2 > S3
الشرط	$\frac{c_1}{c_2} > \frac{4}{3}$	$\frac{c_1}{c_2} > \frac{3a31}{b3}$	$\frac{c_1}{c_2} > \frac{-a_{31}}{a_{32}}$

الجموعة الاولى:

و تتميز هذه المجموعة بان ميل القيد الثالث M_3 يقع بين ميلي القيدين الاول والثاني M_1,M_2 .

عندما تقل قيمة H_2 ستتوسع منطقة الحل والنقطة H_2 تتحرك نزو لا على القيد الثاني الى ان تصبح H_2 على القيد الثاني الى ان تصبح

بالنسبة لهذه المجموعة يوجد 6 مناطق حل هي كالاتي :-

	(-	2 03 :- 9
المنطقة	$b_{_3}$ قيمة	النقاط الطرفية
الاولى	$0 < b_3 < 4$	$S_2, V_1, S_3(b_3/a_{31}, 0), V_3(0, b_3/a_{32}), H$
الثانية	$b_3 = 4$	S_2, V_1, V_3, H
الثالثة	$4 < b_3 < 6$	H_2, H, V_3, V_1
الرابعة	$b_3 = 6$	V_1, H, H_2
الخامسة	$6 < b_3 < \frac{92}{13}$	H, H_2, H_1
السادسة	$b_3 = \frac{92}{13}$	Н

$x_1 + 2x_2 \ge b_3$ مثال 1:- في المسالة 2 اذا كان القيد الثالث بالصيغة

(الجدول (2-1)(الجدول (2-1)قيمةالشروطالسروط(28/13,32/13) $b_3 \ge 92/13$ $z = c_1x_1 + c_2x_2$ (28/13,32/13) $4c_2 \ge 3c_1$, $4c_1 \ge c_2$, $b_3 \le 92/13$ $z = c_1x_1 + c_2x_2$

$x_1 = 2b_3 - 12,$ $x_2 = 6 - (b_3/2)$	$6 \le b_3 \le 92/13, \ c_2 \ge 2c_1$	$z = c_1 x_1 + c_2 x_2$
$x_2 = b_3/2,$	$b_3 < 6, c_2 < 2c_1$	$z = c_2 x_2$
$x_2 = 3$,	$b_3 < 6, c_2 \ge 4c_1$	$z = 3c_2$
$x_1 = 4$,	$b_3 \le 4$, $3c_1 \ge 4c_2$	$z = 4c_1$

جدول نقاط المسالة الاصلية

(الجدول 3)

c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZS2	4	4	4	4	4	4	12	12	12	8	12
ZV1	30	24	12	9	6	3	12	12	6	3	3
ZH	26.7	21.8	12	9.5	7.1	4.6	16.3	20.6	11.4	6.7	8.9

(الجدول ₁₋3)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
ZH1 $28.5 \otimes$ 24 12 9.3 6.5 3.8 14 16 8.5 4.8 5. Local Line Local Line $b_3 = 6$
$b_3 = 6$ The initial state of the property of the prop
ZH2 18.8 15.6 9.2 7.6 6 4.4 14.8 20.4 11.6 7.2 1 4 < b_3 < 6, b_3 = 5 athlit ZH2 11.4 9.8 6.6 5.8 5 4.2 13.4 20.2 11.8 7.6 1
$4 < b_3 < 6, \ b_3 = 5$ كنافة الثالثة $2H2$ 11.4 9.8 6.6 5.8 5 4.2 13.4 20.2 11.8 7.6 1
ZH2 11.4 9.8 6.6 5.8 5 4.2 13.4 20.2 11.8 7.6 1
ZV3 25 20 10 7.5 5 2.5 10 10 5 2.5 2.
$b_3=4$ المنطقة الثانية
ZV3 20 16 8 6 4 2 8 8 4 2 2
$0 < \mathbf{b}_3 < 4, \; b_3 = 2$ المنطقة الاولى
ZV3
ZS3 2 2 2 2 2 6 10 6 4 6

الاستنتاج:

 $m{H}_1$ عندما ($c_1/c_2=1/10$) عندما 28.5 عند النقطة الخامسة أعلى قيمة

 $m{V}_1$ في المناطق الاخرى أعلى قيمة 30 عندما عند النقطة ($c_1/c_2=1/10$) عندما

$x_1 + 3x_2 \ge b_3$ مثال 2:- اذا كان القيد الثالث بالصيغة

(الجدول ₄₋₁)

الحل الامثل	الشروط	قيمة
(28/13,32/13)	$b_3 \ge 124/13$	$z = c_1 x_1 + c_2 x_2$
$x_1 = 4b_3 - 36,$	$c_2 \ge 4c_1, c_2 \ge 3c_1$	$z = c_1 x_1 + c_2 x_2$
$x_2 = 12 - b_3$	$9 \le b_3 \le 124/13$	
$x_2 = 3$	$c_2 \ge 4c_1, 4 \le b_3 \le 9$	$z = c_2 x_2$

(الجدول ₅₋₁)

			()-	- ₁	 						
	$9 < b_3 < rac{124}{13}, b_3 = 9.5$ المنطقة الخامسة										
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZH2	26.6	21.7	11.9	9.49	7	4.61	16.2	20.6	11.39	6.8	8.94
ZH1	27	22	12	9.5	7	4.5	16	20	11	6.5	8.5
$b_3=9$ المنطقة الرابعة											
ZH2	24.5	20.1	11.2	8.9	6.7	4.5	15.9	20.5	11.44	6.8	9.2
$4 < b_3 < 9, b_3 = 7$ المنطقة الثالثة											
ZH2	16.3	13.6	8.3	7	5.6	4.3	14.3	20.3	11.6	7.3	10.3
ZV3	23.3	18.6	9.3	6.9	4.6	2.3	9.3	9.3	4.6	2.3	2.3
			$b_3 =$	4			انية	نطقة الث	الم		
ZV3	13.3	10.6	5.3	4	2.6	1.3	5.3	5.3	2.6	1.3	1.3
			$0 < b_3 < 0$	$4, b_3 = 2$			لی	نطقة الاو	نا ا		

ZV3	6.6	5.3	2.6	2	1.3	2/3	2.6	2.6	4/3	2/3	2/3
ZS3	2	2	2	2	2	2	6	10	6	4	6

الاستنتاج:-

. H_1 عندما وما $(c_1/c_2=1/10)$ عندما عندما عندما أعلى قيمة 27 عندما -1

 $m{V}_1$ عندما ($c_1/c_2=1/10$) عندما 30 عندما أعلى قيمة 30 عندما عندما

استنتاج المناطق في المجموعة الاولى

(6-1) (الجدول

الميل	الحل الامثل1	الحل الامثل2	الحل الامثل3	الحل الامثل4	الحل الامثل5
$c_1/c_2 < 1/4$	V_1	V_1	V_1	V_1	H_1
$c_1/c_2 = 1/4$	$Z_{V_l} = Z_H$	$Z_{V_l} = Z_H$	$Z_{v_l} = Z_H$	$Z_{v_l} = Z_H$	$Z_{H_I} = Z_H$
$1/4 < c_1/c_2 < 3/2$	Н	Н	Н	Н	Н
$c_1/c_2 \ge 3/2$	S_2	S_2	H_2	H_2	H_{2}

 H_2 فأعلى قيمة لدالة الهدف في المنطقة 3,4,5 ستكون عند النقطة $c_1/c_2 \ge 3/2$ وإذا كانت $c_1/c_2 \ge 3/2$ عند النقطة H_1 فأعلى قيمة لدالة الهدف في المنطقة 5 ستكون عند النقطة $c_1/c_2 < 1/4$

الجموعة الثانية:

وتتميز هذه المجموعة بان ميل القيد الثالث $^{M}_{1}$ يقع بين ميلي القيدين الاول والثاني $^{M_{1},M_{2}}_{1}$ عندما تزداد قيمة $^{b}_{3}$ فان منطقة الحل ستتقلص و القيد الثالث يتحرك نحو النقطة $^{H_{1}}$ ثم تتشكل النقطة $^{H_{1}}$

ونتحرك الى ان نصل الى S_2 النقطة

 H_2 وبعدها تتحرك النقطة H_2 صعودا الى ان تصل الى النقطة

بالنسبة لهذه المجموعة يوجد 6 مناطق حل هي كالاتي :-

(الجدول 1-2)

المنطقة	₆₃ قيمة	النقاط الطرفية
الاولى	$0 < b_3 < 3.a_{32}$	S_2, V_1, H, S_3, V_3
الثانية	$b_3 = 3.a_{32}$	S_2, V_1, S_3, H
الثالثة	$3a_{32} < b_3 < 4.a_{31}$	$H_1(\frac{(12a_{32}-4b_3)}{(a_{32}-4a_{31})},\frac{(b_3-12a_{31})}{(a_{32}-4a_{31})}),H,S_3,S_2$
الرابعة	$b_3 = 4.a_{31}$	S_2, H, H_1
الخامسة	$4.a_{31} < b_3 < (a_{31} \frac{28}{13} + a_{32} \frac{32}{13})$	$H, H_1, H2(\frac{16a_{32} - 3b_3}{4a_{32} - 3a_{31}}, \frac{4b_3 - 16a_{31}}{4a_{32} - 3a_{31}})$
السادسة	$b_3 = a_{31} \frac{28}{13} + a_{32} \frac{32}{13}$	Н

مثال 3:- اذا كان القيد الثالث بالصيغة عنه الثالث عنه مثال 3:- اذا كان القيد الثالث بالصيغة

(الجدول 2-2)

الحل الامثل (x1, x2)	الشرط 2	الشرط 1	Z قيمة
(28/13, 32/13)	$b_3 \ge 67/13$		$z = c_1 x_1 + c_2 x_2$
$(4b_3 - 80), (64 - 3b_3)$	$b_3 < 67/13$	$5c_2 \le 4c_1,$	$z = c_1 x_1 + c_2 x_2$
		$4c_2 \le 3c_1,$	
$x_1 = 4$	$b_3 \le 20$	$3c_1 \ge 4c_2$	$z = 4c_1$
$x_2 = 3$,	$b_3 \leq 3$	$3c_1 \ge 4c_2$	$z = 3c_2$

(الجدول 2-3)

$5 < b_3 < \frac{67}{13}, b_3 = 5.1$						المنطقة الخامسة					
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1

ZH2	18.8	15.6	9.2	7.6	6	4.4	14.8	20.4	11.6	7.2	10
<i>ZH</i> 1	26.8	21.9	12	9.52	7.05	4.57	16.2	20.4	11.25	6.67	8.7
$b_3 = 5$							بعة	نطقة الراب	الم		
ZH1	27	22	12	9.5	7	4.5	16	20	11	6.5	8.5
$3 < b_3 < 5$, $b_3 = 4$ مُنْطَقَة الثَّالِثَة الثَّالِثِة الثَّالِّة الثَّالِة الثَّالِّة الثَّالِة الثَّالِّة الْعَالِقِيْلِة الْمُنْلِقِينِ الْمُنْلِقِينِيلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِينِ الْمُنْلِقِيلِيلِقِيلِيلِيلِقِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِ											
ZH1	28.5	23	12	9.3	6.5	3.75	14	16	8.5	4.75	5.75
ZS3	3.3	3.3	3.3	3.3	3.3	3.3	9.9	16.5	9.9	6.6	9.9
			b ₃ =	= 3			المنطقة الثانية				
ZS3	2.4	2.4	2.4	2.4	2.4	2.4	7.2	12	7.2	4.8	7.2
			$0 < b_3$	$< 3, b_3 = 2$!		ئى	نطقة الاوا	الما		
ZV3	20	16	8	6	4	2	8	8	4	2	2
ZS3	1.6	1.6	1.6	1.6	1.6	1.6	4.8	8	4.8	3.2	4.8

الاستنتاج:

- $(c_1/c_2 = 1/10)$ اذا كان H_1 اذا كان (28.5, 27, 26.8 هي قيمة هي أعلى قيمة هي أعلى قيمة المنطقة $(c_1/c_2 = 1/10)$
 - عندما تقل b_3 فان قیمة \mathbf{Z} تزداد.

 $x_1 + x_2 \ge b_3$ مثال 4:- اذا كان القيد الثالث بالصيغة

(الجدول 2–4)

	(4-2 03 7)	1	
(x_1,x_2) الحل الإمثل	الشرط 1	الشرط 2	قيمة Z
(28/13,32/13)	$b_3 > 60/13$		$z = c_1 x_1 + c_2 x_2$
(28/13,32/13)	$b_3 < 60/13$	$3c_1 < 4c_2, 4c_1 > c_2$	$z = c_1 x_1 + c_2 x_2$
$[(4b_3-12)/3,(12-b_3)/3]$	$b_3 \le 60/13$	$c_2 \ge c_1$	$z = c_1 x_1 + c_2 x_2$
$x_2 = 3$,	$b_3 < 3$	$c_2 \ge 4c_1$	$z = 3c_2$
$x_1 = 4$,	$b_3 \le 4$	$3c_1 \ge 4c_2$	$z = 4c_1$
$x_1 = (16 - 3b_3), (4b_3 - 16)$	$4 \le b_3 \le 5.3$	$3c_1 \ge 4c_2,c_1 > c_2$	$z = c_1 x_1 + c_2 x_2$

(الجدول 5-2)

	$4 < b_3 < rac{60}{13}, b_3 = 4.5$ المنطقة الخامسة										
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZH2	22.5	18.5	10.5	8.5	6.5	4.5	15.5	20.5	11.5	7	9.5
ZH1	27	22	12	9.5	7	4.5	16	20	11	6.5	8.5
	$b_3=4$ المنطقة الرابعة										
ZH1	28	22.6	12	9.3	6.6	4	14.6	17.3	9.3	6	6.6
			3	$< b_3 < 4,$	$b_3 = 3.5$			الثالثة	المنطقة		
ZH 1	29	23.3	12	9.2	6.3	3.5	12	14.6	7.6	4.2	4.8
ZS3	3.5	3.5	3.5	3.5	3.5	3.5	10.5	17.5	10.5	7	10.5
			b ₃ =	3				لة الثانية	المنطة		
ZS3	3	3	3	3	3	3	9	15	9	6	9
			$0 < b_3$	$< 3, b_3 =$	2			ة الاولى	المنطقأ		
ZV3	20	16	8	6	4	2	8	8	4	2	2
ZS3	2	2	2	2	2	2	6	10	6	4	6

الاستنتاج:

 $(c_1/c_2 = 1/10)$ اذا كان H_1 انتظمة عند النقطة الذا كان (5,4,3 قيمة عند النقطة الذا كان (5,4,3 قيمة عند النقطة الدا كان

عندما تقل b_3 فان قیمة \mathbf{Z} تزداد.

استنتاج المناطق للمجموعة الثانية

(الجدول 2-6)

الميل	الحل الامثل1	الحل الامثل2	الحل الامثل3	الحل الامثل4	الحل الامثل5
$c_1/c_2 < 1/4$	V_1	V_1	H_1	H_1	\mathbf{H}_{1}
$c_1/c_2 = 1/4$	$Z_{V_I} = Z_H$	$Z_{V_I} = Z_H$	$Z_{H_1} = Z_H$	$Z_{H_I} = Z_H$	$Z_{H_1} = Z_H$

$1/4 < c_1/c_2 < 3/2$	Н	Н	Н	Н	Н
$c_1/c_2 \ge 3/2$	S_2	S_2	S_2	S_2	H_2

 $_{\rm H_2}$ فأعلى قيمة لدالة الهدف في المنطقة 5 ستكون عند النقطة $_{\rm H_2}$ فأعلى قيمة لدالة الهدف في المنطقة $_{\rm 3.4.5}$ ستكون عند النقطة الهدف في المنطقة $_{\rm c_1/c_2} < 1/4$

الجموعة الثالثة :

وتتميز هذه المجموعة بان ميل القيد الثالث M_3 يساوي ميل احد القيدين الاول أوالثاني M_1,M_2

 b_3 منطقة الحل ستتقلص عندما تز داد قيمة

 $H_{\scriptscriptstyle \parallel}$ وبعدها تتشكل النقطة $H_{\scriptscriptstyle \parallel}$ صعودا الى ان نصل الى النقطة

 $x_1 + 4x_2 \ge b_3$ مثال 5:- اذا كان القيد الثالث بالصيغة

	(1-3 037)			
الحل الامثل	الشروط	قيمة		
(28/13,32/13)	$c_2 \le 2c_1, \ 3c_1 \le 4c_2, b_3 = 12$	$z = c_1 x_1 + c_2 x_2$		
$x_1 = (64 - 3b_3)/13,$ $x_2 = (4b_3 - 16)/13$	$4c_2 \le 3c_1, \ 4c_1 \ge c_2$ $4 < b_3 < 12$	$z = c_1 x_1 + c_2 x_2$		
$x_1 = (64 - 3b_3)/13,$ $x_2 = (4b_3 - 16)/13$	$4c_2 \le 3c_1, \ 4c_1 \ge c_2, b_3 = 4$	$z = c_1 x_1 + c_2 x_2$		
$x_1 = 4$	$3c_1 \ge 4c_2, 0 < b_3 < 4$	$z = c_1 x_1$		

بالنسبة لهذه المسالة يوجد 4 مناطق حل هي كالاتي :-(الجدول 3-2)

	(2	. 3 0 ,5=,5 ·)
المنطقة	b_3 قيمة	النقاط الطرفية
الاولى	$0 < b_3 < 4$	H, V_3, V_1, S_3, S_2
الثانية	$b_3 = 4$	V_1, H, S_2, V_3
الثالثة	$4 < b_3 < 12$	$H, V_3, V_1, H2(64-3b_3)/13, (4b_3-16)/13$
الرابعة	$b_3 = 12$	$H(\frac{28}{13},\frac{32}{13}),V_1$

(الجدول 3-3)

	(3-3 6944)										
	$b_3 = 12$							المنطقة الرابعة			
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZV1	30	24	12	9	6	3	12	12	6	3	3
ZH	26.7	21.8	12	9.5	7.1	4.6	16.3	20.6	11.4	6.7	8.9
	$4 < b_3 < 12, b_3 = 8$ المنطقة الثالثة										
ZV3	20	16	8	6	4	2	8	8	4	2	2
ZH2	15.3	12.9	8	6.76	5.53	4.3	14.2	20.3	11.6	7.38	10.4
		ŀ	$b_3 = 4$				بة	طقة الثانب	المند		
ZS2	4	4	4	4	4	4	12	20	12	8	12
ZH	26.7	21.8	12	9.5	7.1	4.6	16.3	20.6	11.4	6.7	8.9
ZV1	30	24	12	9	6	3	12	12	6	3	3
		$0 < b_3$	< 4, l	$p_3 = 2$			ی	طقة الاول	المند		
ZV3	5	4	2	3/2	1	1/2	2	2	1	1/2	1/2
ZS3	2	2	2	2	2	2	6	10	6	4	6

 $m{.}^{V_1}$ في المناطق $(c_1/c_2=1/10)$ عند النقطة هي $m{30}$ اذا كان $(c_1/c_2=1/10)$ عند النقطة

استنتاج المناطق لمثال 5

(الجدول ⁴⁻³)

الميل	الحل الامثل1	الحل الامثل2	الحل الامثل3	الحل الامثل4	
$c_1/c_2 < 1/4$	V_1	V_1	V_1	V_1	
$c_1/c_2 = 1/4$	$Z_{V_I} = Z_H$	$Z_{V_I} = Z_H$	$Z_{v_l} = Z_H$	$Z_{V_i} = Z_H$	
$1/4 < c_1/c_2 < 3/2$	Н	Н	Н	Н	
$c_1/c_2 \ge 3/2$	S_2	\overline{S}_2	H_2	Н	

 $_{
m H_{2}}$ فأعلى قيمة لدالة الهدف في المنطقة 4 عند النقطة $_{
m C_{2}} \geq \frac{1}{2}$

 $4x_1 + 3x_2 \ge b_3$ مثال6:- اذا كان القيد الثالث بالصيغة والمسالة ميل القيد الثالث (يساوي) ميل القيد الثاني في هذه المسالة ميل القيد الثاني (الجدول 5-3)

الحل الامثل	الشروط	قيمة
(28/13,32/13)	$b_3 \ge 16, \ 3c_1 < 4c_2$	$z = c_1 x_1 + c_2 x_2$
$x_1 = 4$	$b_3 \le 16, \ 3c_1 \ge 4c_2$	$z = c_1 x_1$
$(4b_3 - 48)/13$, $(48 - b3)/13$	$9 < b_3 < 16, 3c_1 \ge 4c_2$	$z = c_1 x_1 + c_2 x_2$

بالنسبة لهذه المسالة يوجد 4 مناطق حل هي كالاتي :- والنسبة لهذه المسالة يوجد 6-3

المنطقة	<i>b</i> ₃ قيمة	النقاط الطرفية
الاولى	$0 < b_3 < 9$	H, V_3, V_1, S_3, S_2
الثانية	$b_3 = 9$	V_1, H, S_2, S_3
الثالثة	9 < b ₃ < 16	$H_1((4b_3-48)/13,(48-b_3)/13),H,S_3,S_2$
الرابعة	$b_3 = 16$	$H(\frac{28}{13}, \frac{32}{13}), S_2$

$(^{7-3}$ (الجدول

	$b_{\scriptscriptstyle 3}$ =16 المنطقة الرابعة											
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1	
ZS2	4	4	4	4	4	4	12	20	12	8	12	
ZH	26.7	21.8	12	9.5	7.1	4.6	16.3	20.6	11.4	6.7	8.9	
			9 <	$b_3 < 10$	$6, b_3 = 1$	4		الثالثة	المنطقة			
ZS2	4	4	4	4	4	4	12	20	12	8	12	
ZS3	3.5	3.5	3.5	3.5	3.5	3.5	10.5	14	10.5	7	10.5	
ZH1	27.7	22.5	12	9.4	6.8	4.2	15.1	18.2	9.8	5.7	7.2	
				$b_3 = 9$)			الثانية	المنطقة			
ZS3	2.25	2.25	2.25	2.25	2.25	2.25	6.75	11.25	6.75	4.5	6.75	
	$0 < b_3 < 4, b_3 = 2$ المنطقة الاولى											
Z_{V_3}	6.6	5.3	2.6	2	1.3	0.6	2.6	2.6	1.3	0.6	0.6	
ZS3	0.5	0.5	0.5	0.5	0.5	0.5	1.5	2.5	1.5	1	1.5	

الاستنتاج:

- $(c_1/c_2=1/10)$ اذا كان H_1,H اذا كان (27.7,26.7 عند النقطة H_1,H اذا كان (4.3 قيمة هي 27.7,26.7 عند النقطة H_1
 - داد، \mathbf{Z} عندما تقل b_3 فان قیمة \mathbf{Z}
 - $(c_1/c_2 = 1/10)$ عند النقطة V_1 عند النقطة هي 30 عند قيمة عند أغلى أعلى قيمة عند النقطة (2,1 عند النقطة) -3

		(8-3)جدول	طق (اا	استنتاج المنا
الميل	الحل الامثل 1	الحل الامثل 2	الحل الامثل 3	الحل الامثل 4

$c_1/c_2 < 1/4$	V_1	V_1	H_1	Н
$c_1/c_2 = 1/4$	$Z_{V_i} = Z_H$	$Z_{V_{l}} = Z_{H}$	$Z_{\scriptscriptstyle H_{\scriptscriptstyle I}} = Z_{\scriptscriptstyle H}$	Н
$1/4 < c_1/c_2 < 3/2$	Н	Н	Н	Н
$c_1/c_2 \ge 3/2$	S_2	S_2	S_2	S_2

اذا كانت $c_1/c_2 < 1/4$ فأعلى قيمة لدالة الهدف في المنطقة $c_1/c_2 < 1/4$

الجموعة الرابعة:-

 S_2 عندما تزداد قيم B_3 فان القيد الثالث سيقترب من النقطة V_1 وبعدها سيقترب من النقطة V_2 واخيرا سيصل الى النقطة V_3 . وفي هذه المجموعة ميل القيد الثالث اصغر من ميل القيد الاول.

بالنسبة لهذه المجموعة يوجد 6 مناطق حل هي كالاتي :-(الجدول 4-1)

المنطقة	b_3 قيمة	النقاط الطرفية
الاولى	$0 < b_3 < 4.a_{31}$	H, V_3, S_3, V_1, S_2
الثانية	$b_3 = 4.a_{31}$	H, V_3, V_1, S_2
الثالثة	$4.a_{31} < b_3 < a_{31}.\frac{28}{13} + a_{32}.\frac{32}{13}$	$H_2(\frac{(16a_{32}-3b_3)}{(4a_{32}-3a_{31})},\frac{(4b_3-16a_{31})}{(4a_{32}-3a_{31})}),H,V_3,V_1$
الرابعة	$\mathbf{b}_3 = (\mathbf{a}_{31} \cdot \frac{28}{13} + a_{32} \cdot \frac{32}{13})$	V_3, H, V_1
الخامسة	$(a_{31}, \frac{28}{13} + a_{32}, \frac{32}{13}) < b_3 < 3.a_{32}$	$V_3, V_1, H_1(\frac{(12a_{32}-4b_3)}{(a_{32}-4a_{31})}, \frac{(b_3-12a_{31})}{(a_{32}-4a_{31})})$
السادسة	$b_3 = 3.a_{32}$	V_1

 $x_1 + 10x_2 \ge b_3$ مثال 7:- اذا كان القيد الثالث بالصيغة

(الجدول 4-2)

	(2-4 03)	
الحل الامثل	الشروط	قيمة
H_1	$\left(\frac{28a_{31}}{13} + \frac{32a_{32}}{13}\right) < b_3 < 3.a_{32}, c_1 < 0.1c_2$	$z = c_1 x_1 + c_2 x_2$
Н	$b_3 = (\frac{28a_{31}}{13} + \frac{32a_{32}}{13}), c_1 < 0.1c_2$	$z = c_1 x_1 + c_2 x_2$
H_2	$4 < b_3 < (\frac{28a_{31}}{13} + \frac{32a_{32}}{13}), c_1 < 0.1c_2$	$\mathbf{z} = \mathbf{c}_1 \mathbf{x}_1 + \mathbf{c}_2 \mathbf{x}_2$
S_3	$b_3 = 4, \ c_1 < 0.25c_2$	$z = c_1.x_1$
S_3	$0 < b_3 < 4, \ c_1 < 0.1c_2$	$z = c_1.x_1$
V_3	$0 < b_3 \le 3.a_{32}, c_1 > 0.1c_2$	$z = c_2.x_2$

(الجدول 4-3)

				J 7 00	• ,							
	$(\frac{348}{13}) < b_3 < 30, \ b_3 = 28$ المنطقة الخامسة											
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1	
ZV3	28	22.4	11.2	8.4	5.6	2.8	11.2	11.2	5.6	2.8	2.8	
ZH1	28	22.7	12	9.3	6.7	4	14.7	17.3	9.3	5.3	6.7	
	$b_3 = \frac{348}{13}$ المنطقة الرابعة											
ZV3	26.76	21.41	10.7	8.03	5.35	2.67	10.7	10.7	5.35	2.67	2.67	
			4 < b	$\theta_3 < (\frac{348}{13}),$	$b_3 = 20$		ة الثالثة	المنطق				
ZV3	20	16	8	6	4	2	8	8	4	2	2	
ZH2	20	16.5	9.62	7.89	6.16	4.4	15	20.4	11.56	7.13	9.83	
			$b_3 = 4$	4			نة الثانية	المنطة				
ZV3	4	3.2	1.6	1.2	0.8	0.4	1.6	1.6	0.8	0.4	0.4	

$0 < b_{\scriptscriptstyle 3} < 4, b_{\scriptscriptstyle 3} = 2$ المنطقة الاولى											
ZV3	2	1.6	0.8	0.6	0.4	0.2	0.8	0.8	0.4	0.2	0.2
ZS3	2.	2.	2.	2.	2.	2.	6	10	6	4	6

 $\overline{m{1}}$ - في جميع المناطق أعلى قيمة هي 30 عندما ($c_1/c_2=1/10$) عند النقطة -1

 $2x_1 + 10x_2 \ge b_3$ مثال 8:- اذا كان القيد الثالث بالصيغة

(الجدول 4-4)

الحل الامثل	الشروط	قيمة
$V_{_1}$	$b_3 \ge 30, \ a_{31} < 0.25a_{32}$	$Z = 3c_2$
V_3	$b_3 < 30, c_1 < 0.2c_2$	$Z = c_2 b_3 / 10$
H_1	$b_3 \ge \frac{367}{13}, \ c_1 > 0.2c_2$	$Z = c_1 x_1 + c_2 . x_2$
H_1	$b_3 < \frac{367}{13}, c_1 > 0.2c_2$	$Z = c_1 x_1 + c_2 \cdot x_2$
S_3	$b_3 < 8$,	$Z = c_1 \cdot b_3 / 2$
$V_{_1}$	$b_3 \ge 30, \ a_{31} < 0.25a_{32}$	$Z = 3c_2$
V_3	$b_3 < 30, c_1 < 0.2c_2$	$Z = c_2 b_3 / 10$
$\overline{V_1}$	$b_3 \ge 6, \ a_{31} \le 0.25 a_{32}$	$Z = 3c_2$
V_3	$b_3 \le 6, \ \frac{a_{31}}{a_{32}} \le \frac{c_1}{c_2}$	$Z = c_2 b_3 / 10$

(الجدول 4-5)

	$\frac{376}{13} < b_3 < 30, \ b_3 = 29$ المنطقة الخامسة										
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZV3	29	23.2	11.6	8.7	5.8	2.9	11.6	11.6	5.8	2.9	2.9
ZH1	27	22	12	9.5	7	4.5	16	20	11	6.5	8.5
		$b_3 = \frac{376}{13}$					الرابعة	المنطقا			
ZV3	28.9	23.1	11.56	8.67	5.78	2.89	11.56	11.56	5.78	2.89	2.89
		8 < b ₃ <	$<\frac{376}{13}$, b_3	= 20			ة الثالثة	المنطقا			
ZV3	20	16	8	6	4	2	8	8	4	2	2
ZH2	17.05	14.23	8.58	7.17	5.76	4.35	14.46	20.35	11.64	7.29	10.23
			$b_3 = 8$				الثانية	المنطقة			
ZV3	8	6.4	3.2	2.4	1.6	0.8	3.2	3.2	1.6	0.8	0.8
$0 < b_3 < 8, \ b_3 = 5$							لاولى	المنطقة ا			
ZV3	5	4	2	1.5	1	0.5	2	2	1	0.5	0.5
ZS3	2.5	2.5	2.5	2.5	2.5	2.5	10	10	7.5	5	7.5

 $_{\rm V_1}$ في جميع المناطق أعلى قيمة هي $_{\rm SO}$ عند النقطة ($_{\rm C_1}$ عند النقطة)

استنتاج المناطق المجموعة الرابعة

(الجدول 4-6)

الميل	الحل الامثل 1	الحل الامثل 2	الحل الامثل 3	الحل الامثل 4	الحل الامثل 5
$c_1/c_2 < 1/4$	V_1	V_1	V_1	$V_{_1}$	V_1
$c_1/c_2 = 1/4$	$Z_{V_i} = Z_H$	$Z_{V_i} = Z_H$	$Z_{H_1} = Z_H$	Н	$H_{_1}$
$1/4 < c_1/c_2 < 3/2$	Н	Н	Н	Н	Н.
$c_1/c_2 \ge 3/2$	S_2	S_2	Н	Н	H_1

اذا كانت $1/4 \ge 1/c_2 \ge 1/c_1$ فأعلى قيمةً لدالة الهدف في المنطقة 5 ستكون عند النقطة $_{
m H_1}$ اذا كانت $_{
m C_1}/c_2 \ge 3/c_2 \ge 3/c_3$ اذا كانت $_{
m C_2}/c_2 \ge 3/c_3$

 $^{
m V_1}$ عند النقطة أعلى قيمة هي 30 عندما ($c_1/c_2=1/10$) عند النقطة الاي المسألتين وفي جميع المناطق

الجموعة الخامسة:-

 V_1 عندما ترداد قيمه b_3 فان القيد الثالث سيقترب من النقطة S_2 وبعدها سيقترب من النقطة H واخيرا سيصل الى النقطة S_2 وفي هذه المجموعة ميل القيد الثالث اكبر من ميل القيد الثانى.

بالنسبة لهذه المجموعة يوجد 6 مناطق حل هي كالاتي :- (الجدول 5-1)

المنطقة	₀₃ قيمة	النقاط الطرفية
الاولى	$0 < b_3 < 3.a_{32}$	H, V_3, S_3, V_1, S_2
الثانية	$b_3 = 3.a_{32}$	V_1, H, S_2, S_3
الثالثة	$3.a_{32} < b_3 < a_{31}.\frac{28}{13} + a_{32}.\frac{32}{13}$	$H_1(\frac{(12a_{32}-4b_3)}{(a_{32}-4a_{31}},\frac{(b_3-12a_{31})}{(a_{32}-4a_{31}},H,S_2,S_3)$
الرابعة	$\mathbf{b}_3 = (\mathbf{a}_{31}, \frac{28}{13} + a_{32}, \frac{32}{13})$	H, S_2, S_3
الخامسة	$(a_{31}, \frac{28}{13} + a_{32}, \frac{32}{13}) < b_3 < a_{31}, 4$	$H_{2}(\tfrac{(16a_{32}-3b_{3})}{(4a_{32}-3a_{31})},\tfrac{(4b_{3}-16a_{31})}{(4a_{32}-3a_{31})},S_{2},S_{3}$
السادسة	$b_3 = 4.a_{31}$	S_2

مثال 9: - اذا كان القيد الثالث بالصيغة مثال 9: اذا كان القيد الثالث عال القيد الثالث عال القيد الثالث عالم القيد الثالث عالم القيد الثالث عالم القيد الثالث الثالث القيد القيد القيد الثالث القيد القيد الثالث القيد القي

(الجدول 2-5)

	(2-3 03 7)	
الحل الامثل	الشروط	قيمة
$x_1 = (4b3 - 12)/9,$	$3 \le b_3 < 102/13$,	$z = c_1 x_1 + c_2 x_2$
$x_2 = (60 - 2b_3)/18$		
$x_1 = (6b3 - 32)/7$	$102/13 \le b_3 < 10,$	$z = c_1 x_1 + c_2 x_2$
$x_2 = (80 - 8b_3)/7$		
$x_2 = b_3$	$3 \le b_3 < 10,$	$z = c_2 x_2$
	$(2a_{31} \ge 5a_{32})or(2c_1 \le 5c_2)$	
$x_1 = 4$	$(3a_{31} \ge 4a_{32})or(3c_1 \le 4c_2),$	$z = c_1 x_1$
	$b_3 \ge 10$,	

(الجدول ₃₋₅)

		$\frac{102}{13} < l$	$p_3 < 10, b$	₃ = 9		ىة	قة الخامس	المنط			
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZH2	14.6	12.3	7.7	6.6	5.4	4.3	14	20.3	11.7	7.4	10.6
ZS3	3.6	3.6	3.6	3.6	3.6	3.6	10.8	18	10.8	7.2	10.8
	$b_3=rac{102}{13}$ المنطقة الرابعة										
ZS3	3.1	3.1	3.1	3.1	3.1	3.1	9.4	15.7	9.4	6.3	9.4
		3	$< b_3 < \frac{10}{13}$	$\frac{2}{3}$, $b_3 = 5$			ة الثالثة	المنطة			
ZS3	2	2	2	2	2	2	6	10	6	4	6
			$b_3 =$	3			ة الثانية	المنطة			
ZS3	1.2	1.2	1.2	1.2	1.2	1.2	3.6	6	3.6	2.4	3.6
	$0 < b_{\scriptscriptstyle 3} < 4, b_{\scriptscriptstyle 3} = 2$ المنطقة الاولى										
ZV3	20	16	8	6	4	2	8	8	4	2	2
ZS3	0.8	0.8	0.8	0.8	0.8	0.8	2.4	4	2.4	1.6	2.4

 $\frac{7}{4}x_1 + x_2 \ge b_3$ مثال 10:- اذا كان القيد الثالث بالصيغة

(الجدول 1-6)

الحل الامثل	الشروط	قيمة
S_3	$b_3 \ge 7$	$z = c_1 x_1$
V_3	$\frac{c_1}{c_2} \ge \frac{a_{31}}{c_{32}}, b_3 < 7$	$z = c_2 x_2$
H_1	$\frac{c_1}{c_2} \ge \frac{a_{31}}{c_{32}}, b_3 < 7$	$z = c_1 x_1 + c_2 x_2$
S_3	$\frac{c_1}{c_2} \le \frac{7}{4}, b_3 < 7$	$z = c_1 x_1$
S_3	$4c_1 \le 7c_2,b_3 = \frac{81}{13}$	$z = c_1 x_1$
Н	$4c_1 \ge 7c_2,b_3 = \frac{81}{13}$	$z = c_1 x_1 + c_2 x_2$
S_3	$4c_1 \le 7c_2,b_3 \le 3$	$z = c_1 x_1$
V_3	$4c_1 \ge 7c_2,b_3 < 3$	$z = c_2 x_2$
S_3	$4c_1 \ge 7c_23 < b_3 < \frac{81}{13}$	$z = c_1 x_1$
H_1	$4c_1 \le 7c_2, 3 < b_3 < \frac{81}{13}$	$z = c_1 x_1 + c_2 x_2$
$V_{_1}$	$4c_1 \ge 7c_2,b_3 = 3$	$z = c_2 x_2$
S_3	$\frac{c_1}{c_1}$ کیل $\frac{81}{13} < b_3 < 7$	$z = c_1 x_1$

(الجدول ₃₋₆)

	المنطقة الخامسة $\frac{81}{13} < b_3 < 7, \ b_3 = 6.5$										
c_{1}, c_{2}	1,10	1,8	1,4	1,3	1,2	1,1	3,4	5,4	3,2	2,1	3,1
ZH2	18.8	15.6	9.2	7.6	6	4.4	14.8	20.4	11.6	7.2	10
ZS3	3.71	3.71	3.71	3.71	3.71	3.71	11.1	18.6	11.1	7.4	11.1
	$h_{\cdot}=rac{81}{}$ المنطقة الرابعة										
ZS3	3.56	3.56	3.56	3.56	3.56	3.56	10.7	17.8	10.7	7.12	10.7
			3 <	$b_3 < \frac{81}{13}, b$	3 = 5	ثالثة	المنطقة ال				
ZS3	2.85	2.85	2.85	2.85	2.85	2.85	8.6	14.25	8.6	5.7	8.6
ZH1	28	22.7	12	9.3	6.7	4	14.7	17.3	9.3	5.3	6.7
				b	$_{3} = 3$	لثانية	المنطقة ا				
ZS3	1.71	1.71	1.71	1.71	1.71	1.71	5.13	8.55	5.13	3.42	5.13
	$0 < b_3 < 3, \ b_3 = 2$ المنطقة الاولى										
ZV3	20	16	8	6	4	2	8	8	4	2	2
ZS3	1.14	1.14	1.14	1.14	1.14	1.14	3.42	5.7	3.42	2.28	3.42

(في المناطق $(c_1/c_2=1/10)$ عند النقطة. عندما عند النقطة النقطة. أعلى قيمة هي

استنتاج المناطق المجموعة الخامسة

(الجدول 5-8)

الميل	الحل الامثل1	الحل الامثل2	الحل الامثل3	الحل الامثل4	الحل الامثل5
$c_1/c_2 < 1/4$	V_1	V ₁	H ₁	Н	H_2
$c_1/c_2 = 1/4$	$Z_{V_l} = Z_H$	$\boldsymbol{Z}_{\boldsymbol{V}_{l}} = \boldsymbol{Z}_{H}$	$Z_{H_I} = Z_H$	Н	H_2
$1/4 < c_1/c_2 < 3/2$	Н	Н	Н	Н	H_2
$c_1/c_2 \ge 3/2$	S_2	S_2	S_2	S_2	S_2

 $m{v}_1$ المسألتين وفي المناطق 1.2 أعلى قيمة هي 30 عندما النقطة $(c_1/c_2=1/10)$ عند النقطة v_1 . $_{
m H.}$ اذا كانت $_{
m c_2}$ مأعلى قيمة لدالة الهدف في المنطقة و ستكون عند النقطة . $_{
m H_{2}}$ اذا كانت $_{
m C_{2}}$ منتكون عند النقطة الهدف في المنطقة و ستكون عند النقطة الدالة الهدف في المنطقة و منتكون عند النقطة

الاستنتاجات النهائية:-

لاحظنا ان

 a_{31}/a_{32} \ 4/3

 b_3 منطقة الحل ستتقلص عندما تزداد قيمة -1

 $3/4\langle a_{31}/a_{32}$

 $c_1/c_2 = a_{31}/a_{32}$ وجدنا قيمتان متساويتان لنقطتين مختلفتين عندما يكون -2

 S_2, V_1, H عندما تزداد قيمة b_3 تدريجيا يتحرك القيد المضاف باتجاه احدى النقاط الثلاثة S_2, V_1, H ووجدنا بان (ميل القيد المضاف له تاثير على توجهه نحو أي نقطة اولا) ووجدنا اربعة انماط مختلفة تبين حركة القيد المضاف وهناك علاقة مابين ميل القيد المضاف وميلى القيدين الاول والثانى او مقلوباتهم

النقطة الثالثة | النقطة الثانية | النقطة الاولى الشرط 2 الحالة الشرط 1 $a_{31}/a_{32}\langle 3/4$ $a_{31}/a_{32}\langle 4/3$ 1 S_2 V_1 Н $1/4\langle a_{31}/a_{32}$ 2 S_2 Н $V_{\scriptscriptstyle 1}$ $a_{31}/a_{32} \langle 1/4$ 3 V_1 S_2 Н $a_{31}/a_{32} \langle 4/3$ $1/4\langle a_{31}/a_{32}$ $1/4\langle a_{31}/a_{32}$ 4 V_1 S_2

المراجع REFERENCES

Н

1- Taha, Hamdy . A . (1976). Operations Research An Introduction

. Macmillan Publishing Co.INC .

2-H.W.LENSTRA.JR.[November 83]

"Integer Programming with fixe number of variables"

Operations Research, Vol 8 < No 4. Mathematics of

3- R.E.Gomory [1963]:

"All-Integer Integer Programming Algorithm"

In J.F.Muth and Thompson, Industrial Scheduling Pp 193-206

Prentice-hall, Englewood Cliff, new jersy

4- R.S.Garfinkel and .L.Nemhauser [1972

"Integer Programming"

John Wiley and Sons, Inc ,New York.

5-John .P .Hayes[1993]

" Introduction To Digital Logic Design "

By Addison. Wesley. Publishing Company. Inc.

المراجع العربية

1- أساسيات بحوث العمليات/نماذج وتطبيقات.

اد. محمد محد كعبور / كلية المحاسبة/ غريان / 1992 .

الغهرس

الفهــــرس

الصفحة	اسم الباحث	عنوان البحث	ر ت
4	فرج رمضان الشبيلي	معالم منهج الإمام مالك في الاستدلال	1
		بأقوال الصحابة	
22	سليمان مصطفى الرطيل	أثر الخلوة الصحيحة بالمعقود عليها	2
	محمد إمحمد أبوراس	اختلاف الصيغ الصرفية في القراءات	
47	عبد الرحمن بشير الصابري	القرآنية الواردة في معجم تاج العــــروس وأثره في المعنى	3
62	امباركة مفتاح التومي	اختلاف النحاة حول معنى (رُبَّ)	4
02	عبير إسماعيل الرفاعي	وحرفيته	
80	مصطفى رجب الخمري	الإبداع البياني في المثل القرآني(نماذج مختارة)	5
		كتاب "إبراهيم رحومة الصاري	
108	ميلود مصطفى عاشور	1918- 1972 ترجمته ونتاجه الأدبي"	6
		عرض ونقد	
		جهود الهادي الدالي في تحقيق مخطوط	
120	محمد مصطفى المنتصر	(السعادة الأبدية في التعريف بعلماء	7
		تتبكت البهية)	
	عمر ابراهيم المنشاز	المقومات الطبيعية للسياحة ودورها في	
135	معتوق علي عون	التنمية المحلية المستدامة في منطقة	8
		الخمس	
155	عبدالسلام المركز	مقومات السياحة التاريخية والاثرية في	9
		شمال شرق ليبيا	
	عطية رمضان الكيلانى	قراءة في نتائج مركز أورام مدينة	
185	سالمة عبد الله الأبيض	مصراتة خلال الأعوام من 2013	10
		وحتى 2015	
211	أسماء حامد اعليجه	دور الأسرة في ترسيخ القيم الأخلاقية لذى الأطفال بمرحلة الطفولة المتأخرة	11
238	كميلة المهدي التومي	علاقة الأخلاق بالسياسة عند الفارابي	12
250	مفتاح ميلاد الهديف	جرائم العنف في المجتمع الليبي	13

مجلة التربوي

اعدد 13	i)			(الفهرس
	273	بنور ميلاد عمر العماري	انعكاسات غياب الأمن على التنمية في المجتمع الليبي بعد ثورة السابع عشر من فبراير (2011م)	14	
	295	حواء بشير معمر أبو سطاش حنان سعيد العورانــــــــــــــــــــــــــــــــــــ	الصمود النفسي وعلاقته بأساليب مواجهة الضغوط (النفسية – الاجتماعية) لدى بعض من أمهات أطفال التوحد المترددات على مركز المقريف للتوحد بمدينة الخمس	15	
	324	مناف عبدالمحسن عبدالعزيز	إضافة قيد وتأثير المعاملات (cj,aij)	16	
	340	Fatima F. M. Yahia Ahmed M. Abushaala	Comparitive Study of Vector Space Model Techniques in Information Retrieval for Arabic Language	17	
	345	G. E. A. Muftah A.M. Alshuaib E. M. Ashmila	Electrodeposition of semiconductors CuInTe2, Thin film solar cells	18	
	356	Salma O Irhuma Fariha J Amer	Further Proof on Fuzzy Sequences on Metric Spaces	19	
	360	Adel Ali Ewhida	The weibull distribution as mixture of exponential distributions	20	
	368	Khaled Meftah Gezait	Expressive Treatment of Post-Traumatic Stress Disorder (PTSD) in Sexually Abused Children	21	
	378	Khadija Ali Al Hapashy Amna Ali Al Mashrgy Hawa Faraj Al Borrki	English Students' Attitudes towards Studying English Poetry	22	
	389	Milad Ali	Vocabulary knowledge and English reading obstacles faced by Libyan Undergraduate students at Elmergib University	23	
	399	Najat Mohammed Jaber Suad Husen Mawal Aisha Mohammed Ageal	Difficulties Encountered by some Libyan Third – Year Secondary School Students in Forming and Using English Future Tenses	24	

مجلة التربوي

عدد 13	الـ				الفهرس
	412	Naiema Farag Egneber Samah Abo-Dagh	An Acoustic Study of Voice On Investigating the difference between the effects of inductive and deductive approach in teaching grammar for sixth grade students in Anahda primary School	25	
	422	Salem Msaoud Adrugi Mustafa Almahdi Algaet Tareg Abdusalam Elawaj	Using Data Mining techniques in tracking the students' behavior in the asynchronous e-learning systems	26	
	432	س	الفهر	27	1