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On the fine spectrum of the generalized difference operator        

over the Hahn sequence space   

 
Suad H. Abu-Janah 

Faculty of Science, Elmergib University, Msallata 

suadabujanah@yahoo.com 

 

Abstract 
       Of particular interest to many researchers are the investigation of the 

spectra of the difference operator and its generalizations over sequence 

spaces. In this work, we will introduce the spectra analysis of the 

generalized difference operator        on the Hahn sequence space  . 

Moreover, we will improve some proofs of the results in the existing 

literature [27]. 

Keywords: Spectrum, Infinite matrices, Sequence spaces. 

 

1 Introduction and preliminaries 
 

       The generalized difference operator            is defined on the 

Banach sequence space   as:   

                                            
                              

(1.1) 

where           .    

 This operator  can be represented by a band matrix  as  

       [

    
    
    
    

]         . 

In fact, the operator        is reduced to the right-shift, difference and 

Zweier matrices in the special cases            ,              and 

             , respectively. 

    The fine spectrum of the generalized difference operator        over 

the sequence spaces    and c have been studied by Altay and Başar [4]. 

Also, the spectrum and fine spectrum of the generalized difference 

operator        over the sequence spaces    and     have been studied 

by Furkan et al. [10]. Recently, the fine spectrum of the operator B(r,s) 

over    and     where       has been examined by Bilgiç and 

mailto:suadabujanah@yahoo.com
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Furkan [7]. Dutta and Tripathy [8] have studied the fine spectrum of the 

generalized difference operator        over the space of convergent 

series. Recently, the fine spectrum of the operator        over     has 

been studied by El-Shabrawy and Abu-Janah [9]. Moreover, some 

additional results concerning on other well-known classification of the 

spectrum of        have been given as the approximate point spectrum, 

defect spectrum and compression spectrum, see [6]. 

    Indeed, if     and     , the operator        reduces to the 

operator  . The fine spectrum of the difference operator   over the 

sequence spaces    and   has been studied by Altay and Başar [3] and 

over    and     by Kayaduman and Furkan [15]. Recently, the fine 

spectra of the difference operator   over the sequence spaces    and    , 

where      , has been studied by Akhmedov and Başar [1,2]. In 

2016, the fine spectrum of the forward difference operator on the Hahn 

space   was studied by Yeşilkayagil and Kirişci [27]. 

Now, we introduce some definitions and notations. 
          be a complex infinite dimensional Banach space and      be the 

set of all bounded linear operators on   into itself. If       , we use 

     to denote the range of  . 

For a Banach space   we use    to denote the dual space of  . If 

      , then          is the adjoint operator of  . With    we 

associate the operator 

                                                       

 

where    is the identity mapping of   onto itself. If    has an inverse 

which is linear, we denote it by   
   and call it the resolvent operator of 

 . 

    If       , All of the points   in the complex plane   are divided 

into two mutually exclusive and complementary sets: 

The resolvent set.                                 , 
and 

The spectrum:                                    , 
The spectrum:        is the complement of        in the complex 

plane  . 

    It is useful to make a finer classification of points by subdividing 

       in some way. One such method of subdivision is well-known, the 

spectrum        can be analyzed into three disjoint sets as follows: 

The point spectrum:                                    , 
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The continuous spectrum: 

                                           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅            
      , 
The residual spectrum: 

                                          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    , 
These three subspectra form a disjoint subdivisions 

 

                              . 

 

This subdivision is customary subdivision (see, for example, Stone [23] 

or [18,19]). An advantage of this classification is the division of the 

spectrum into disjoint sets. 

    Following Taylor and Halberg [24,25], a linear operator   with domain 

and range in a normed space  , is calssified  ,    or    , according as its 

range,     , is all of  ; is not all of  , but is dense in  ; or is not dense 

in  . In addition    is classified 1, 2, or 3 according as     exists and is 

continuous; exists, but is not continuous; or does not exist. The state of an 

operator is the combination of its Roman and Arabic numerical 

classification and is denoted by the Roman numeral with the Arabic 

numeral as a subscript [24,p.94], [25,p.235-236]. 

    For a bounded linear operator   on a complex Banach space   we 

partition the complex plane into subsets corresponding to the states of the 

operator     . For example, the subset consisting of those   for which 

the state of the operator      is     will be denoted by         . Thus 

the resolvent set,       , of the operator   consists of the union of 

        and         , the point spectrum consists of the union of 

       ,          and          , the residual spectrum consists of the 

union of           and           and the continuous spectrum consists 

of the         [24,p.109],[25,p.264-265]. 

    Following Appel et al. [5], three more subdivisions of the spectrum can 

be defined, which are not necessarily disjoint: the approximate point 

spectrum, defect spectrum and compression spectrum. 

Definition 1.1: Given a bounded linear operator    on a Banach space  , 

we call a sequence ( k) in   as a Weyl sequence for   if ‖  ‖    and 

‖   ‖    , as    . 

Definition 1.2: In what follows, we call the set      
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the approximate point spectrum of   . Moreover, the subspectrum 

                                    

is called defect spectrum of   .       

There is another subspectrum 

                                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    , 

which is often called compression spectrum. 

The two subspectra           and         are not necessarily disjoint. 

As well as          and          are not necessarily disjoint. 

Where 

                        

                         

Clearly,                  and                   Moreover, 

comparing these subspectra with those in                

                we note that 

                          

                                                                [        

        ]  
 

    The following result clarifies the connection between the spectrum of a 

bounded linear operator and that of its adjoint which is needed in the 

sequel. 

 

Proposition 1.1. [5] Spectra and subspectra of an operator          and 

its adjoint           are related by the following relations :  

(a)                , 

(b)     
              , 

(c)      
             , 

(d)     
              , 

(e)     
              , 

(f)      
             , 

(g)                                        
     . 

The following relations can be obtained by the preceding definitions 
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               ╲         ,                                                 

                                    ╲       .                           (1.2) 

 

    In [12,13] the Hahn space h is defined by 

                
                 ∑  |       |

 
     

  , 

with the norm 

‖ ‖  ∑  |       |
 
        |  |. 

    Rao [20 ,Proposition 2.1] defined a new norm on   as ‖ ‖  
∑  |       |

 
   . Further, the dual space of   is norm isomorphic to 

the space    of all absolutely summable sequences          
 , which 

is defined as 

 

              
            ⁄    |∑   

 
   |    . 

The spaces    and    are Banach spaces with the given norm in [13,20]. 

Theorem 1.1. [13,16,17: The matrix         gives rise to a bounded 

linear operator        if and only if   

1.            , for all        , 

2.  ∑  |          |
 
   converges, for all                 

3.       
 

 
∑  |∑             

 
   | 

       

 

Main Results 

 

       Our study in this section is focused on the fine spectrum of B(r,s) on 

the Hahn space h, which is defined by Eq. (1.1), where μ=h. 

    The following theorem shows the bounded linearity of the operator 

B(r,s) on h. 

 

Theorem 2.1. The operator            is a bounded linear operator. 

 

Proof. The linearity of        is trivial and so is omitted here for brevity. 

To show the operator        is a bounded linear transformation on   into 
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itself, it is enough to prove that        satisfies the three conditions 

given by Theorem 1.1. 

  Obviously, the matrix              satisfies 

 

 .                        
 

Also, let 

 

    ∑  |          |
 
                  

 

So 

      |       |   |       |   |       |   |       |    
 |   |   | |,                    |       |   |       |   |    
   |   |       |    

       = |r|+2|r-s|+3|s|, 

 

and 

       |       |   |       |   |       |   |       |    

           | |   |   |   | |. 
 

Then, in general, we obtain 

 

    ∑  |          |
 
         | |   |   |       | |,  

 

which is convergent, for each fixed    . Additionally, let 

 

    ∑  |∑             
 
   | 

                . 

 

So 

      ∑  |          |
 
    

         |       |   |       |   |       |   |       |  
  
         |   |   | |, 
 

              ∑  |                         |
 
    

      |               |   |               |  
 |               | 
     |               |    
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       | |   | |, 
and 

 

             ∑  |                                      |
 
   

  

                 |                       |   |            
           |     |                       |   |    
                   |            |                
       |    
   = 3|r|+5|s|. 

 

Precisely, we have the following cases: 

For    , 

 

|∑          
 
   |    |                              

   |   
                      |                             
          | 
                      |       |  

                      | |. 
 

For      , 

 

 |∑             
 
   |   |                        

          | 

                          |                               

         | 

                          |       | 
                          | |. 
 

For        , 

  |∑                
 
   |   |                              

             | 
 

                                      |                                 

                | 
                      = |s-0| 

                      = |s|. 
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But, when          , we have 

 

 |∑             
 
   |  |                        

                | 
                                       |   |   . 

 

Therefore 

    |∑ (          )
 
   |  | |                     

                |∑ (          )
 
   |  | |             

                |∑ (          )
 
   |                  

 

Then, for      

    ∑  |∑             
 
   |   | |   | |       | | 

    

                                                             | |       | |. 
 

Thus 

        
 

 
∑  |∑             

 
   | 

    

 

  

        | |           | |  | |   | |   . 

So, the operator        is bounded. 

This completes the proof.   

 

Theorem 2.2.                    |   |  | | . 
Proof.   Suppose         |   |  | | .  Then |   |  | |, and so, 

the matrix           has an inverse. 

If          
   ; solving the eqution               , for 

         
  in terms of y, we get 
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Then                      where 

      

[
 
 
 
 
 
 
 
 
 

 

   
  

  

      
 

   
 

  

      
  

      
 

   

   

      
  

      
  

      

  

      
   

      
  

      

   

     

   
   
   

 

   
  

  

      
 

   
 

   

]
 
 
 
 
 
 
 
 
 

       (2.1) 

Hence  

   
   

|
      

   
|  |

 

   
|     

And so 

   
   

                     

Let  

   ∑  |          |

 

   

 

Then, the details are given as follows: 

                  ∑  |          |
 
    

                       |       |   |       |   |       |  
 |       |        

        |
 

   
| |   

 

   
|   |

 

      
| |   

 

   
|

  |
  

      
| |   

 

   
|    

                        |
 

   
| |   

 

   
|

 (   |
 

   
|   |

 

   
|
 

    ) 

                    ∑  |          |
 
    

                       |       |   |       |   |       |  
 |       |    
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                        |
 

   
|   |

 

   
| |   

 

   
|

  |
 

      
| |   

 

   
|   |

  

      
| |   

 

   
|    

                        |
 

   
|  |

 

   
| |   

 

   
|

 (   |
 

   
|   |

 

   
|
 

    ) 

                    ∑  |          |
 
    

                       |       |   |       |   |       |  
 |       |    

                        |
 

   
|   |

 

   
| |   

 

   
|

  |
 

      
| |   

 

   
|   |

  

      
| |   

 

   
|    

                         |
 

   
|  |

 

   
| |   

 

   
|

 (   |
 

   
|   |

 

   
|
 

    ) 

Then, one can obtain that 

        |
 

   
|  |

 

   
| |   

 

   
| (∑     

 

   

|
 

   
|
 

) 

The ratio test yields that the series ∑       
   |

 

   
|
 

 is convergent for 

fixed  

           

It remains now to prove that  

   
 

 

 
 ∑    

 

   

|∑(          )

 

   

|    

For this purpose let 

   ∑    

 

   

|∑(          )

 

   

|                 

Then  

                  ∑  |          |
 
    

                       |       |   |       |   |       |  
 |       |        
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        |
 

   
 

 

      
|   |

 

      
 

  

      
|

  |
  

      
  

  

      
|    

                        |
 

   
| |   

 

   
|

 (   |
 

   
|   |

 

   
|
 

    ) 

                        |
 

   
| |   

 

   
|  (∑     

 

   

|
 

   
|
 

)  

 

                  ∑  |                      |
 
    

                       |               |   |               |  
 |               |                               |               |  
      

        |
 

   
 

 

      
   

 

   
|

  |
 

      
 

  

      
  

 

   
 

 

      
|

  |
  

      
  

  

      
 

 

      
 

  

      
|

  |
  

      
  

  

      
 

  

      
  

  

      
|    

                      |
 

      
|   |

 

   
 

  

      
|

  |
 

      
  

  

      
|   |

  

      
  

  

      
|    

                        |
 

      
|

 |
 

   
| |   

  

      
| (   |

 

   
|   |

 

   
|
 

  ) 
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                        |
 

      
|  |

 

   
| |   

  

      
|

 (∑     

 

   

|
 

   
|
 

)  

And 

                  ∑  |                                  |
 
    

                       |                        |   |        
               |   |                       |  
 |                       |        

                          |
 

   
 

 

      
   

 

   
    | 

                              |
 

      
 

  

      
  

 

   
 

 

      
   

 

   
| 

                                 |
  

      
  

  

      
 

 

      
 

  

      

 
 

   
 

 

      
| 

                             |
  

      
  

  

      
 

  

      
  

  

      
 

 

      
 

  

      
|    

                              |
 

      
|   |

  

      
|   |

 

   
  

  

      
|  

 |
 

      
  

  

      
|    

                              |
 

      
|   |

  

      
|  |

 

   
| |   

  

      
| (  

 |
 

   
|   |

 

   
|
 
  )      

                             

 |
 

      
|   |

  

      
|  |

 

   
| |   

  

      
|

 (∑     

 

   

|
 

   
|
 

)  

Recursively, we obtain 

   |
 

      
| [   |

 

   
|   |

 

   
|
 

        |
 

   
|
   

] 
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 |
 

   
| |   

  

      
|  (∑     

 

   

|
 

   
|
 

) 

 |
 

      
|   |

 

   
|    

Where 

       |
 

   
|   |

 

   
|
 

        |
 

   
|
   

 

   ∑     

   

   

|
 

   
|
 

 

   |   
  

      
| (∑     

 

   

|
 

   
|
 

) 

Clearly 

   
 

 

 
       

Further 

 

 
    |  (

 

   
)
 

| (
 

 
∑  

 

   

|
 

   
|
 

 ∑  

 

   

|
 

   
|
 

)  

Then 
   
 

 

 
       since |

 

   
|     and so 

 

   
 

 

 
    

   
 

 

 
∑  

 

   

|∑(          )

 

   

| 

 |
 

      
|
   
 

 

 
    |

 

   
|
   
 

 

 
       

This implies that                     
                 |   |  | |  

Conversel, let               then                    Since 

               Transform of the unit sequence              is in   

that is 

                (
 

   
 

 

      
 

  

      
   )    

 

 

Then     and              . Therefore,              
| | . Thus 
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            | |             . 

 

Since the spectrum of any bounded linear operator is compact, we have 

 

            | |             . 

 

This completes the proof.   

 

Theorem 2.3. The operator        has no eigenvalues in  . 

 

Proof. Suppose            for             
   ,    . Then 

by solving the system of equations 

 

                     

               

               

          
                   

          
 

we obtain 

 

           and                ,    . 

 

If    , we have    . Also, if    , we would have    . So 

              .   

 

Theorem 2.4. The point spectrum of the adjoint operator         on    

is given by 

                                                                    |   |  | | . 

Proof. Suppose that              for                  in 

     . Then by solving the system of equations 

                            

                

     
                  

we obtain 
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                  (
   

 
)
 
  ,          

 

Therefore, we must take      since otherwise we would have    . 

Also, it is clear that                 . On the other hand, if    , 

then       for all     and 

   
 

 

   
|∑   

 

   

|       
 

 

   
|∑ (

   

 
)
   

  

 

   

| 

                                      |  |   
 

(
 

   
) | ∑ (

   

 
)
   

 
   | 

    |  |   
 

 

   
   |

   

 
|  |

   

 
|      |

   

 
|    , 

which is finite for all        |   |  | | . Thus 

                                                                          |   |  | |  
              . 

The second inclusion follows immediately from the fact that 

                                                                                   

           . 

This completes the proof.   

 

Lemma 2.1.  [25, Page 59].  If   is a bounded linear operator on a 

normed space   into   a normed space  , then   has a dense range in   if 

and only if (       exists. 

 

Lemma 2.2. [25, Page 60].   has a bounded inverse if and only if     is 

onto. 

 

Lemma 2.3. [11, pp. 20; 14, pp. 38]. If   is a linear operator on a 

complex normed space   into itself, then           is an open set. 

 

Lemma 2.4. If   is a bounded linear operator on a Banach space   into 

itself, then 

                                                                        

            . 

Proof. For                    , the operator      is one to one 

and hence has an inverse. But       is not one to one. Now, Lemma 2.1 

yields the fact that the range of the operator      is not dense in  . This 

implies that               .   
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Theorem 2.5. The residual spectrum of the operator        on h is given 

by 

                                                     |   |  | | . 
Proof. From Lemma 2.4 and Theorems 2.3 and 2.4, we obtain the desired 

consequence.   

 

Theorem 2.6. The continuous spectrum of the operator        on   is 

                                                               . 

Proof. Since             is the union of the disjoint sets             , 

            and             , then Theorems 2.2, 2.3 and 2.5 imply 

              .   

 

    Next, we investigate the fine structure of the spectrum of the operator 

       with respect to the other classification schemes. 

 

    Indeed, for the operator        on the Hahn space h, we have 

                                                         , 

since 

                         . 

Also 

                           , 

since 

                           . 

Moreover 

                            , 

by the closed graph theorem. Also 

                                                |   |  
| | .         2.2 

 

Next, we completely determine the parts                and 

              . This gives a finer subdivision of the spectrum. 

 

Theorem 2.7. The following statements hold: 

1.                     |   |  | | , 
2.                     |   |  | | . 
 

Proof. (i)            |   |  | | . Then                  by 

Theorem 2.4, that is,                does not exist. So            is 

injective, which implies by Lemma 2.1 that,           has not a dense 
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range;             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   . Also,                 by Theorem 2.3. 

Hence           has an inverse. Next, we must prove that         
      is bounded, it suffices to show that            is onto, and then 

we use Lemma 2.2. For this purpose, given           
       , we 

must find          
     such that                . Direct 

calculations show that 

 

                                                 ,  for all    . 

Then we have 
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Then 
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Since ∑ |
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    are finite for all      

  |   |  | | , then    
 

 

   
| ∑   

 
   |   . That is          

  

  . Therefore            is onto, and so, we conclude that    
  |   |  | |                . Further, by Lemma 2.3, we have 

 

                         |   |  | |        |   |  
| | . 
 

(2) Follows immediately from Eq. (2.2).  

   This completes the proof.   

 

        The relations given in Eq. (1.2) and Proposition 1.1(e) imply the 

next theorem. 

 

Theorem 2.8. The following statements hold: 

(i)                          | | , 

(ii)                          | |    
(iii)                           | | . 

 

    Now, we review the results concerning the spectra of  the difference 

operator   on the Hahn sequence space [27], which are so related to our 

problem. 
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    We will show by introducing an example that some statements of the 

following theorem given in [27] are incorrect. 

 

Theorem 2.9. [27]. The following statements hold: 

(i)                     , 
(ii)            , 

(iii)      
                   , 

(iv)                         , 
(v)                      , 

(vi)                       , 

(vii)                       , 
(viii)                      . 

    Firstly, we prove that              . Indeed, for     

       
     with        , we have 

                                     

                                     

                              
 

Therefore           . If     , so     and 

 

   
 

         |∑        
 
   |  |  |   

 
         |∑       

   |  

 . 

Then     . 

This proves that the statement (iii), and consequently the statements given 

by (iv),(v),(vi) and (vii) in this theorem are incorrect. Applying our 

results in Theorems 2.4, 2.5, 2.6 and 2.8, we obtain 

                
                      , 

                            , 
               , 

                           , 

                           . 
 

This completes the proof.   

 

Conclusion 

       Refer to the literature, El-Shabrawy and Abu-Janah [9] gave results 

regarding the fine spectrum in general to study the problem on the 

sequence spaces     and   without any detailed proofs about the spectra 
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of the operator     over  . In [9], They determined the spectra of the 

operator        on     without any details about        on  . Our 

results are more general than the corresponding results in the existing 

literature [4,7,8,10] and there are improvements in some proofs of the 

results. 
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