

חجلة التربوكا مجلة علمية مרكمة تصار عنَكليةالتربية جامعة المرقبا

العدد العشرون
يناير 2022م

هيئـــة تحريـر
 هجلة التربوي

$$
\begin{aligned}
& \text { - المجلة ترحب بما يرد عليها من أبحاث وعلى استعداد لنشر ها بعد التحكيم . } \\
& \text { • المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها } \\
& \text { • • كافة الآراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها الاتها } \\
& \text { - } \\
& \text { • الثجوث المقدمة لللشر لا ترد لأصحابها نشرت أو لم تنشر } \\
& \text { (حقوق الطبع محفوظة للكلية) }
\end{aligned}
$$

يشترط في البحوث العلمية المقدمة للنشر أن ير اعى فيها ما يأتي : . أصول البحث العلمي وقواعده - ألا تكون المادة العلمية قد سبق نشر ها أو كانت جزء الـوا من رسالة علمية . .

- تتعدل البحوث المقبولة وتصحح وفق ما ير اه المحكمون .
- التزام الباحث بالضوابط التي وضعتها المجلة من عدد الصفحات ، ونوع الخط ورقمه ، والفترات الزمنية الممنوحة للتعديل ، وما يستجد من ضوابط تضعها المجلة مستقبلا . تنبيهات :
- للمجلة الحق في تعديل البحث أو طلب تعديله أو رفضه . - يخضع البحث في النشر لأولويات المجلة وسياستها . - البحوث المنشورة تعبر عن وجهة نظر أصحابها ، ولا تعبر عن وجهة نظر المجلة .

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research.
2- The research articles or manuscripts should be original and have not been published previously. Materials that are currently being considered by another journal or is a part of scientific dissertation are requested not to be submitted.
3- The research articles should be approved by a linguistic reviewer.
4- All research articles in the journal undergo rigorous peer review based on initial editor screening.
5- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.
2 - The research articles undergo to the policy of the editorial board regarding the priority of publication.
3- The published articles represent only the authors' viewpoints.

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

On the fine spectrum of the generalized difference operator $B(r, s)$ over the Hahn sequence space h

Suad H. Abu-Janah
Faculty of Science, Elmergib University, Msallata
suadabujanah@yahoo.com

Abstract

Of particular interest to many researchers are the investigation of the spectra of the difference operator and its generalizations over sequence spaces. In this work, we will introduce the spectra analysis of the generalized difference operator $B(r, s)$ on the Hahn sequence space h. Moreover, we will improve some proofs of the results in the existing literature [27]. Keywords: Spectrum, Infinite matrices, Sequence spaces.

1 Introduction and preliminaries

The generalized difference operator $B(r, s): \mu \rightarrow \mu$ is defined on the Banach sequence space μ as:

$$
\begin{equation*}
B(r, s) x:=\left(r x_{0}, r x_{1}+s x_{0}, r x_{2}+s x_{1}, \ldots\right), x=\left(x_{k}\right)_{k=0}^{\infty} \in \mu, \tag{1.1}
\end{equation*}
$$

where $r, s \in \mathbb{R}, s \neq 0$.
This operator can be represented by a band matrix as

$$
B(r, s)=\left[\begin{array}{cccc}
r & 0 & 0 & \cdots \\
s & r & 0 & \cdots \\
0 & s & r & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad(s \neq 0) .
$$

In fact, the operator $B(r, s)$ is reduced to the right-shift, difference and Zweier matrices in the special cases $(r, s)=(0,1),(r, s)=(1,-1)$ and $(r, s)=(r, 1-r)$, respectively.
The fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c have been studied by Altay and Başar [4]. Also, the spectrum and fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and $b v$ have been studied by Furkan et al. [10]. Recently, the fine spectrum of the operator $\mathrm{B}(\mathrm{r}, \mathrm{s})$ over ℓ_{p} and $b v_{p}$ where $1<p<\infty$ has been examined by Bilgiç and

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثيد العربد 20

Furkan [7]. Dutta and Tripathy [8] have studied the fine spectrum of the generalized difference operator $B(r, s)$ over the space of convergent series. Recently, the fine spectrum of the operator $B(r, s)$ over $b v_{0}$ has been studied by El-Shabrawy and Abu-Janah [9]. Moreover, some additional results concerning on other well-known classification of the spectrum of $B(r, s)$ have been given as the approximate point spectrum, defect spectrum and compression spectrum, see [6].

Indeed, if $r=1$ and $s=-1$, the operator $B(r, s)$ reduces to the operator Δ. The fine spectrum of the difference operator Δ over the sequence spaces c_{0} and c has been studied by Altay and Başar [3] and over ℓ_{1} and $b v$ by Kayaduman and Furkan [15]. Recently, the fine spectra of the difference operator Δ over the sequence spaces ℓ_{p} and $b v_{p}$, where $1 \leq p<\infty$, has been studied by Akhmedov and Başar [1,2]. In 2016, the fine spectrum of the forward difference operator on the Hahn space h was studied by Yeşilkayagil and Kirişci [27].
Now, we introduce some definitions and notations.
Let X be a complex infinite dimensional Banach space and $B(X)$ be the set of all bounded linear operators on X into itself. If $T \in B(X)$, we use $R(T)$ to denote the range of T.
For a Banach space X we use X^{*} to denote the dual space of X. If $T \in B(X)$, then $T^{*} \in B\left(X^{*}\right)$ is the adjoint operator of T. With T we associate the operator

$$
T_{\lambda}=T-\lambda I
$$

where I is the identity mapping of X onto itself. If T_{λ} has an inverse which is linear, we denote it by T_{λ}^{-1} and call it the resolvent operator of T.

If $T \in B(X)$, All of the points λ in the complex plane \mathbb{C} are divided into two mutually exclusive and complementary sets:
The resolvent set. $\rho(T, X)=\{\lambda \in \mathbb{C}: T-\lambda I$ is a bijection $\}$, and
The spectrum: $\sigma(T, X)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not invertible $\}$,
The spectrum: $\sigma(T, X)$ is the complement of $\rho(T, X)$ in the complex plane \mathbb{C}.

It is useful to make a finer classification of points by subdividing $\sigma(T, X)$ in some way. One such method of subdivision is well-known, the spectrum $\sigma(T, X)$ can be analyzed into three disjoint sets as follows:
The point spectrum: $\sigma_{p}(T, X)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not injective $\}$,

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

The continuous spectrum:
$\sigma_{c}(T, X)=\{\lambda \in \mathbb{C}: T-\lambda I$ is injective and $\overline{R(T-\lambda I)}=X$, but $R(T-$ $\lambda I) \neq X\}$,
The
residual
spectrum:
$\sigma_{r}(T, X)=\{\lambda \in \mathbb{C}: T-\lambda I$ is injective, but $\overline{R(T-\lambda I)} \neq X\}$,
These three subspectra form a disjoint subdivisions

$$
\sigma(T, X)=\sigma_{p}(T, X) \cup \sigma_{c}(T, X) \cup \sigma_{r}(T, X) .
$$

This subdivision is customary subdivision (see, for example, Stone [23] or $[18,19])$. An advantage of this classification is the division of the spectrum into disjoint sets.

Following Taylor and Halberg [24,25], a linear operator T with domain and range in a normed space X, is calssified $I, I I$ or $I I I$, according as its range, $R(T)$, is all of X; is not all of X, but is dense in X; or is not dense in X. In addition T is classified 1,2 , or 3 according as T^{-1} exists and is continuous; exists, but is not continuous; or does not exist. The state of an operator is the combination of its Roman and Arabic numerical classification and is denoted by the Roman numeral with the Arabic numeral as a subscript [24,p.94], [25,p.235-236].

For a bounded linear operator T on a complex Banach space X we partition the complex plane into subsets corresponding to the states of the operator $T-\lambda I$. For example, the subset consisting of those λ for which the state of the operator $T-\lambda I$ is $I I_{3}$ will be denoted by $I I_{3}(T, X)$. Thus the resolvent set, $\rho(T, X)$, of the operator T consists of the union of $I_{1}(T, X)$ and $I I_{1}(T, X)$, the point spectrum consists of the union of $I_{3}(T, X), I I_{3}(T, X)$ and $I I I_{3}(T, X)$, the residual spectrum consists of the union of $I I I_{1}(T, X)$ and $I I_{2}(T, X)$ and the continuous spectrum consists of the $I I_{2}(T, X)$ [24,p.109],[25,p.264-265].
Following Appel et al. [5], three more subdivisions of the spectrum can be defined, which are not necessarily disjoint: the approximate point spectrum, defect spectrum and compression spectrum.
Definition 1.1: Given a bounded linear operator T on a Banach space X, we call a sequence $\left(x_{\mathrm{k}}\right)$ in X as a Weyl sequence for T if $\left\|x_{k}\right\|=1$ and $\left\|T x_{k}\right\| \rightarrow 0$, as $\kappa \rightarrow \infty$.

Definition 1.2: In what follows, we call the set
$\sigma_{\mathrm{ap}}(T, X)=\{\lambda \in \mathbb{C}$: there exists a Weyl sequence for $T-\lambda I\}$

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

the approximate point spectrum of T. Moreover, the subspectrum

$$
\sigma_{\delta}(T, X)=\{\lambda \in \mathbb{C}: \mathcal{R}(\lambda I-T) \neq X\}
$$

is called defect spectrum of T.
There is another subspectrum

$$
\sigma_{c o}(T, X)=\{\lambda \in \mathbb{C}: \overline{\mathcal{R}(\lambda I-T)} \neq X\}
$$

which is often called compression spectrum.
The two subspectra $\sigma_{\mathrm{ap}}(T, X)$ and $\sigma_{\delta}(T, X)$ are not necessarily disjoint. As well as $\sigma_{\mathrm{ap}}(T, X)$ and $\sigma_{c o}(T, X)$ are not necessarily disjoint.

Where

$$
\begin{gathered}
\sigma(T, X)=\sigma_{\mathrm{ap}}(T, X) \cup \sigma_{\delta}(T, X) \\
\sigma(T, X)=\sigma_{\mathrm{ap}}(T, X) \cup \sigma_{c o}(T, X)
\end{gathered}
$$

Clearly, $\quad \sigma_{p}(T, X) \subseteq \sigma_{\mathrm{ap}}(T, X)$ and $\sigma_{c o}(T, X) \subseteq \sigma_{\delta}(T, X)$. Moreover, comparing these subspectra with those in $\sigma(T, X)=\sigma_{p}(T, X) \cup$ $\sigma_{c}(T, X) \cup \sigma_{r}(T, X)$ we note that

$$
\begin{aligned}
& \sigma_{r}(T, X)=\sigma_{c o}(T, X) \backslash \sigma_{p}(T, X) \\
& \\
& \sigma_{r}(T, X)=\sigma(T, X) \backslash\left[\sigma_{p}(T, X) \cup\right.
\end{aligned}
$$

$\left.\sigma_{c o}(T, X)\right]$.
The following result clarifies the connection between the spectrum of a bounded linear operator and that of its adjoint which is needed in the sequel.

Proposition 1.1. [5] Spectra and subspectra of an operator $T \in B(X)$ and its adjoint $T^{*} \in B\left(X^{*}\right)$ are related by the following relations :

> (a) $\sigma\left(T^{*}, X^{*}\right)=\sigma(T, X)$
> (b) $\sigma_{c}\left(T^{*}, X^{*}\right) \subseteq \sigma_{\mathrm{ap}}(T, X)$,
> (c) $\sigma_{\mathrm{ap}}\left(T^{*}, X^{*}\right)=\sigma_{\delta}(T, X)$,
> (d) $\sigma_{\delta}\left(T^{*}, X^{*}\right)=\sigma_{\mathrm{ap}}(T, X)$,
> (e) $\sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{c o}(T, X)$
> (f) $\sigma_{c o}\left(T^{*}, X^{*}\right) \supseteq \sigma_{p}(T, X)$
> (g) $\sigma(T, X)=\sigma_{\mathrm{ap}}(T, X) \cup \sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{p}(T, X) \cup \sigma_{\mathrm{ap}}\left(T^{*}, X^{*}\right)$

The following relations can be obtained by the preceding definitions

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

$$
\begin{align*}
& \sigma_{\mathrm{ap}}(T, X)=\sigma(T, X) \backslash I I I_{1}(T, X), \\
& \quad \sigma_{\delta}(T, X)=\sigma(T, X) \backslash I_{3}(T, X) . \tag{1.2}
\end{align*}
$$

In $[12,13]$ the Hahn space h is defined by

$$
h=\left\{x=\left(x_{k}\right)_{k=0}^{\infty}: \lim _{k \rightarrow} x_{k}=0 \text { and } \sum_{k=0}^{\infty} k\left|x_{k+1}-x_{k}\right|<\right.
$$ ∞ \},

with the norm

$$
\|x\|_{h}=\sum_{k=0}^{\infty} k\left|x_{k+1}-x_{k}\right|+\sup _{k}\left|x_{k}\right| .
$$

Rao [20 ,Proposition 2.1] defined a new norm on h as $\|x\|_{h}=$ $\sum_{k=0}^{\infty} k\left|x_{k+1}-x_{k}\right|$. Further, the dual space of h is norm isomorphic to the space σ_{∞} of all absolutely summable sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$, which is defined as

$$
\sigma_{\infty}=\left\{x=\left(x_{k}\right)_{k=0}^{\infty}: \sup _{n \in \mathbb{N}}(1 / n+1)\left|\sum_{k=0}^{n} x_{k}\right|<\infty\right\} .
$$

The spaces h and σ_{∞} are Banach spaces with the given norm in [13,20].
Theorem 1.1. [13,16,17: The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B(h)$ if and only if

1. $\lim _{n \rightarrow \infty} a_{n k}=0$, for all $k=1,2, \ldots$,
2. $\sum_{n=1}^{\infty} n\left|a_{n k}-a_{n+1, k}\right|$ converges, for all $k=(1,2, \ldots)$.
3. $\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(a_{n v}-a_{n+1, v}\right)\right|<\infty$.

Main Results

Our study in this section is focused on the fine spectrum of $\mathrm{B}(\mathrm{r}, \mathrm{s})$ on the Hahn space h, which is defined by Eq. (1.1), where $\mu=$ h.

The following theorem shows the bounded linearity of the operator $\mathrm{B}(\mathrm{r}, \mathrm{s})$ on h .

Theorem 2.1. The operator $B(r, s): h \rightarrow h$ is a bounded linear operator.
Proof. The linearity of $B(r, s)$ is trivial and so is omitted here for brevity. To show the operator $B(r, s)$ is a bounded linear transformation on h into

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

itself, it is enough to prove that $B(r, s)$ satisfies the three conditions given by Theorem 1.1.
Obviously, the matrix $B(r, s)=\left(b_{n k}\right)$ satisfies

$$
\lim _{n \rightarrow \infty} b_{n k}=0, k=1,2,3, \ldots
$$

Also, let

$$
R_{k}=\sum_{n=1}^{\infty} n\left|b_{n k}-b_{n+1, k}\right|, \quad k=1,2,3, \ldots
$$

So

$$
\begin{aligned}
& R_{1}=\left|b_{11}-b_{21}\right|+2\left|b_{21}-b_{31}\right|+3\left|b_{31}-b_{41}\right|+4\left|b_{41}-b_{51}\right|+\cdots= \\
& |r-s|+2|s|, \quad R_{2}=\left|b_{12}-b_{22}\right|+2\left|b_{22}-b_{32}\right|+3 \mid b_{32}- \\
& b_{42}|+4| b_{42}-b_{52} \mid+\cdots \\
& \quad=|\mathrm{r}|+2|\mathrm{r}-\mathrm{s}|+3|\mathrm{~s}|
\end{aligned}
$$

and

$$
\begin{aligned}
R_{3} & =\left|b_{13}-b_{23}\right|+2\left|b_{23}-b_{33}\right|+3\left|b_{33}-b_{43}\right|+4\left|b_{43}-b_{53}\right|+\cdots \\
& =2|r|+3|r-s|+4|s|
\end{aligned}
$$

Then, in general, we obtain

$$
R_{k}=\sum_{n=1}^{\infty} n\left|b_{n k}-b_{n+1, k}\right|=(k-1)|r|+k|r-s|+(k+1)|s|
$$

which is convergent, for each fixed $k \in \mathbb{N}$. Additionally, let

$$
S_{k}=\sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|, \quad k=1,2,3, \cdots
$$

So

$$
\begin{aligned}
& S_{1}=\sum_{n=1}^{\infty} n\left|b_{n 1}-b_{n+1,1}\right| \\
&=\left|b_{11}-b_{21}\right|+2\left|b_{21}-b_{31}\right|+3\left|b_{31}-b_{41}\right|+4\left|b_{41}-b_{51}\right|+ \\
&=|r-s|+2|s|, \\
& \\
& \\
& \\
& S_{2}=\sum_{n=1}^{\infty} n\left|\left(b_{n 1}-b_{n+1,1}\right)+\left(b_{n 2}-b_{n+1,2}\right)\right| \\
&=\left|b_{11}-b_{21}+b_{12}-b_{22}\right|+2\left|b_{21}-b_{31}+b_{22}-b_{32}\right|+ \\
& 3\left|b_{31}-b_{41}+b_{32}-b_{42}\right| \\
&+4\left|b_{41}-b_{51}+b_{42}-b_{52}\right|+\cdots
\end{aligned}
$$

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

$$
=2|r|+4|s|
$$

and

$$
\begin{aligned}
& \quad S_{3}=\sum_{n=1}^{\infty} n\left|\left(b_{n 1}-b_{n+1,1}\right)+\left(b_{n 2}-b_{n+1,2}\right)+\left(b_{n 3}-b_{n+1,3}\right)\right| \\
& \quad=\left|b_{11}-b_{21}+b_{12}-b_{22}+b_{13}-b_{23}\right|+2 \mid b_{21}-b_{31}+b_{22}- \\
& b_{32}+b_{23}-b_{33}|+3| b_{31}-b_{41}+b_{32}-b_{42}+b_{33}-b_{43}|+4| b_{41}- \\
& b_{51}+b_{42}-b_{52}+b_{43}-b_{53} \mid \\
& b_{53}-b_{63} \mid+\cdots \\
& \quad=3|\mathrm{r}|+5|\mathrm{~s}| .
\end{aligned}
$$

Precisely, we have the following cases:
For $n=1$,

$$
\begin{aligned}
\left|\sum_{v=1}^{k}\left(b_{1 v}-b_{2 v}\right)\right| & =\mid b_{11}-b_{21}+b_{12}-b_{22}+b_{13}-b_{23}+\cdots+b_{1 k}- \\
b_{2 k} \mid & =\mid\left(b_{11}+b_{12}+b_{13}+\cdots+b_{1 k}\right)-\left(b_{21}+b_{22}+\right. \\
\left.b_{23}+\cdots+b_{2 k}\right) \mid & \\
& =|r-(s+r)| \\
& =|s| .
\end{aligned}
$$

For $n=k>1$,

$$
\begin{aligned}
& \quad\left|\sum_{v=1}^{k}\left(b_{k v}-b_{k+1, v}\right)\right|=\mid b_{k 1}-b_{k+1,1}+b_{k 2}-b_{k+1,2}+\cdots+ \\
& b_{k k}-b_{k+1, k} \mid \\
& \\
& =\mid\left(b_{k 1}+b_{k 2}+\cdots+b_{k k}\right)-\left(b_{k+1,1}+b_{k+1,2}+\right. \\
& \left.\cdots+b_{k+1, k}\right) \mid \quad \\
& \\
& \\
& \\
& =|(s+r)-s| \\
&
\end{aligned}
$$

For $n=k+1>1$,

$$
\begin{aligned}
& \left|\sum_{v=1}^{k}\left(b_{k+1, v}-b_{k+2, v}\right)\right|=\mid b_{k+1,1}-b_{k+2,1}+b_{k+1,2}-b_{k+2,2}+\cdots+ \\
& b_{k+1, k}-b_{k+2, k} \mid
\end{aligned}
$$

$$
\begin{gathered}
=\mid\left(b_{k+1,1}+b_{k+1,2}+\cdots+b_{k+1, k}\right)-\left(b_{k+2,1}+\right. \\
\left.b_{k+2,2}+\cdots+b_{k+2, k}\right) \mid \\
=|s-0| \\
=|s| .
\end{gathered}
$$

	مجـلة الـتـربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

But, when $n \neq 1, k, k+1$, we have

$$
\begin{aligned}
\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right| & =\mid\left(b_{n 1}+b_{n 2}+\cdots+b_{n k}\right)-\left(b_{n+1,1}+\right. \\
\left.b_{n+1,2}+\cdots+b_{n+1, k}\right) \mid & =|0-0|=0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|=|s| \quad \text { when } n=1 \text { or } n=k+1 \\
& \left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|=|r| \quad \text { when } n=k \\
& \left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|=0 \quad \text { otherwise }
\end{aligned}
$$

Then, for $k \geq 2$

$$
\begin{aligned}
S_{k}=\sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right| & =|s|+k|r|+(k+1)|s| \\
& =k|r|+(k+2)|s| .
\end{aligned}
$$

Thus

$$
\sup _{k \geq 2} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|
$$

$$
=\sup _{k \geq 2}[|r|+((k+2) / k)|s|]=|r|+2|s|<\infty .
$$

So, the operator $B(r, s)$ is bounded.
This completes the proof.
Theorem 2.2. $\sigma(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$.
Proof. Suppose $\lambda \notin\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$. Then $|\lambda-r|>|s|$, and so, the matrix $B(r, s)-\lambda I$ has an inverse.
If $y=\left(y_{k}\right)_{k=1}^{\infty} \in h$; solving the eqution $(B(r, s)-\lambda I) x=y$, for $x=\left(x_{k}\right)_{k=1}^{\infty}$ in terms of y , we get

$$
\begin{gathered}
x_{1}=(1 /(r-\lambda)) y_{1} \\
x_{1}=\frac{1}{r-\lambda} y_{1} \\
x_{k}=\frac{(-s)^{k-1}}{(r-\lambda)^{k}} y_{1}+\frac{(-s)^{k-2}}{(r-\lambda)^{k-1}} y_{2}+\cdots+\frac{-s}{(r-\lambda)^{2}} y_{k-1} \frac{1}{(r-\lambda)} y_{k},
\end{gathered}
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

Then $(B(r, s)-\lambda I)^{-1}=\left(c_{n k}\right)$, where

$$
\left(c_{n k}\right)=\left[\begin{array}{ccccccc}
\frac{1}{r-\lambda} & 0 & 0 & & & \tag{2.1}\\
\frac{-s}{(r-\lambda)^{2}} & \frac{1}{r-\lambda} & 0 & 0 & 0 & \cdots & \\
\frac{s^{2}}{(r-\lambda)^{3}} & \frac{s^{2}}{(r-\lambda)^{3}} & \frac{1}{r-\lambda} & 0 & 0 & \cdots & 0 \\
\frac{1}{r-\lambda} & 0 & \cdots & \cdots \\
\frac{-s^{3}}{(r-\lambda)^{4}} & \frac{s^{2}}{(r-\lambda)^{3}} & \frac{-s}{(r-\lambda)^{2}} & \frac{-s}{(r-\lambda)^{2}} & \frac{1}{r-\lambda} & \cdots \\
\frac{s^{4}}{(r-\lambda)^{5}} & \frac{-s^{3}}{(r-\lambda)^{4}} & \frac{s^{2}}{(r-\lambda)^{3}} & \vdots & \vdots & \ddots \\
\vdots & \vdots & \vdots & & &
\end{array}\right]
$$

Hence

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1, k}}{c_{n k}}\right|=\left|\frac{s}{r-\lambda}\right|<1
$$

And so

$$
\lim _{n \rightarrow \infty} c_{n k}=0, \quad k=1,2,3, \ldots \ldots
$$

Let

$$
R_{k}=\sum_{n=1}^{\infty} n\left|c_{n k}-c_{n}+1, k\right|
$$

Then, the details are given as follows:

$$
\begin{aligned}
& R_{1}=\sum_{n=1}^{\infty} n\left|c_{n 1}-c_{n+1,1}\right| \\
& =\left|c_{11}-c_{21}\right|+2\left|c_{21}-c_{31}\right|+3\left|c_{31}-c_{41}\right|+ \\
& 4\left|c_{41}-c_{51}\right|+ \\
& =\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right|+2\left|\frac{s}{(r-\lambda)^{2}}\right|\left|1-\frac{s}{r-\lambda}\right| \\
& \quad+3\left|\frac{s^{2}}{(r-\lambda)^{3}}\right|\left|1-\frac{s}{r-\lambda}\right|+\cdots \\
& =\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right| \\
& \\
& +\left(1+2\left|\frac{s}{r-\lambda}\right|+3\left|\frac{s}{r-\lambda}\right|^{2}+\cdots \ldots\right) \\
& R_{2}
\end{aligned}
$$

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثندر العربي 20 2.5

$$
\begin{aligned}
& =\left|\frac{1}{r-\lambda}\right| 2+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right| \\
& +3\left|\frac{s}{(r-\lambda)^{2}}\right|\left|1-\frac{s}{r-\lambda}\right|+4\left|\frac{s^{2}}{(r-\lambda)^{3}}\right|\left|1-\frac{s}{r-\lambda}\right|+\cdots \\
& =\left|\frac{1}{r-\lambda}\right|+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right| \\
& +\left(2+3\left|\frac{s}{r-\lambda}\right|+4\left|\frac{s}{r-\lambda}\right|^{2}+\cdots \ldots .\right) \\
R_{3} & =\sum_{n=1}^{\infty} n\left|c_{n 3}-c_{n+1,3}\right| \\
& =\left|c_{13}-c_{23}\right|+2\left|c_{23}-c_{33}\right|+3\left|c_{33}-c_{43}\right|+
\end{aligned}
$$

$$
4\left|c_{43}-c_{53}\right|+\cdots
$$

$$
=2\left|\frac{1}{r-\lambda}\right|+3\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right|
$$

$$
+4\left|\frac{s}{(r-\lambda)^{2}}\right|\left|1-\frac{s}{r-\lambda}\right|+5\left|\frac{s^{2}}{(r-\lambda)^{3}}\right|\left|1-\frac{s}{r-\lambda}\right|+\cdots
$$

$$
=2\left|\frac{1}{r-\lambda}\right|+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right|
$$

$$
+\left(3+4\left|\frac{s}{r-\lambda}\right|+5\left|\frac{s}{r-\lambda}\right|^{2}+\cdots \ldots\right)
$$

Then, one can obtain that

$$
R_{k}=(k-1)\left|\frac{1}{r-\lambda}\right|+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right|\left(\sum_{n=0}^{\infty}(k+n)\left|\frac{s}{r-\lambda}\right|^{n}\right)
$$

The ratio test yields that the series $\sum_{n=0}^{\infty}(k+n)\left|\frac{s}{r-\lambda}\right|^{n}$ is convergent for fixed
$k=1,2,3, \ldots$
It remains now to prove that

$$
\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(c_{n v}-c_{n+1, v}\right)\right|<\infty
$$

For this purpose let

$$
S_{k}=\sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(c_{n v}-c_{n+1, v}\right)\right|, \quad k=1,2,3, \ldots
$$

Then

$$
\begin{aligned}
S_{1}= & \sum_{n=1}^{\infty} n\left|c_{n 1}-c_{n+1,1}\right| \\
& =\left|c_{11}-c_{21}\right|+2\left|c_{21}-c_{31}\right|+3\left|c_{31}-c_{41}\right|+
\end{aligned}
$$

$4\left|c_{41}-c_{51}\right|+\cdots \ldots \ldots \ldots$

| معامل التأثير العربيJournal of Educational
 ISSN: 2011-421X
 Arcif Q3 |
| :--- | :---: | :---: |

$$
\begin{gathered}
=\left|\frac{1}{r-\lambda}-\frac{s}{(r-\lambda)^{2}}\right|+2\left|\frac{s}{(r-\lambda)^{2}}-\frac{s^{2}}{(r-\lambda)^{3}}\right| \\
+3\left|\frac{s^{2}}{(r-\lambda)^{3}}-\frac{s^{3}}{(r-\lambda)^{4}}\right|+\cdots
\end{gathered}
$$

$$
=\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right|
$$

$$
+\left(1+2\left|\frac{s}{r-\lambda}\right|+3\left|\frac{s}{r-\lambda}\right|_{\infty}^{2}+\cdots \ldots\right)
$$

$$
=\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s}{r-\lambda}\right|+\left(\sum_{n=0}^{\infty}(n+1)\left|\frac{s}{r-\lambda}\right|^{n}\right)
$$

$$
S_{2}=\sum_{n=1}^{\infty} n\left|c_{n 1}-c_{n+1,1+}+c_{n 2}-c_{n+1,2}\right|
$$

$$
=\left|c_{11}-c_{21}+c_{12}-c_{22}\right|+2\left|c_{21}-c_{31}+c_{22}-c_{32}\right|+
$$

$$
3\left|c_{31}-c_{41}+c_{32}-c_{42}\right|+\quad 4\left|c_{41}-c_{51}+c_{42}-c_{52}\right|+
$$

$$
\begin{aligned}
=\left\lvert\, \frac{1}{r-\lambda}\right. & \left.-\frac{s}{(r-\lambda)^{2}}+0-\frac{1}{r-\lambda} \right\rvert\, \\
& +2\left|\frac{s}{(r-\lambda)^{2}}-\frac{s^{2}}{(r-\lambda)^{3}}+\frac{1}{r-\lambda}-\frac{s}{(r-\lambda)^{2}}\right| \\
& +3\left|\frac{s^{2}}{(r-\lambda)^{3}}-\frac{s^{3}}{(r-\lambda)^{4}}+\frac{s}{(r-\lambda)^{2}}-\frac{s^{2}}{(r-\lambda)^{3}}\right| \\
& +4\left|\frac{s^{3}}{(r-\lambda)^{4}}-\frac{s^{4}}{(r-\lambda)^{5}}+\frac{s^{2}}{(r-\lambda)^{3}}-\frac{s^{3}}{(r-\lambda)^{4}}\right|+\cdots \\
& =\left|\frac{s}{(r-\lambda)^{2}}\right|+2\left|\frac{s}{r-\lambda}-\frac{s^{2}}{(r-\lambda)^{3}}\right| \\
& +3\left|\frac{s}{(r-\lambda)^{2}}-\frac{s^{3}}{(r-\lambda)^{4}}\right|+4\left|\frac{s^{2}}{(r-\lambda)^{3}}-\frac{s^{4}}{(r-\lambda)^{5}}\right|+\cdots \\
& =\left|\frac{s}{(r-\lambda)^{2}}\right| \\
& +\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s^{2}}{(r-\lambda)^{2}}\right|\left(2+3\left|\frac{s}{r-\lambda}\right|+4\left|\frac{s}{r-\lambda}\right|^{2}+\cdots\right)
\end{aligned}
$$

	مجـلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثبدر العربي 20

$$
\begin{aligned}
& =\left|\frac{s}{(r-\lambda)^{2}}\right|+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s^{2}}{(r-\lambda)^{2}}\right| \\
& +\left(\sum_{n=0}^{\infty}(n+2)\left|\frac{s}{r-\lambda}\right|^{n}\right),
\end{aligned}
$$

And

$$
\begin{gathered}
S_{3}=\sum_{n=1}^{\infty} n\left|c_{n 1}-c_{n+1,1+}+c_{n 2}-c_{n+1,2}+c_{n 3}-c_{n+1,3}\right| \\
=\left|c_{11}-c_{21}+c_{12}-c_{22}++c_{13}-c_{23}\right|+2 \mid c_{21}-c_{31}+ \\
c_{22}-c_{32}+c_{23}-c_{33}|+3| c_{31}-c_{41}+c_{32}-c_{42}+c_{33}-c_{43} \mid+ \\
4\left|c_{41}-c_{51}+c_{42}-c_{52}+c_{43}-c_{53}\right|+\cdots \ldots \ldots \ldots . \\
=\left|\frac{1}{r-\lambda}-\frac{s}{(r-\lambda)^{2}}+0-\frac{1}{r-\lambda}+0-0\right| \\
+2\left|\frac{s}{(r-\lambda)^{2}}-\frac{s^{2}}{(r-\lambda)^{3}}+\frac{1}{r-\lambda}-\frac{s}{(r-\lambda)^{2}}+0-\frac{1}{r-\lambda}\right| \\
+3 \left\lvert\, \frac{s^{2}}{(r-\lambda)^{3}}-\frac{s^{3}}{(r-\lambda)^{4}}+\frac{s}{(r-\lambda)^{2}}-\frac{s^{2}}{(r-\lambda)^{3}}\right. \\
\left.+\frac{1}{r-\lambda}-\frac{s}{(r-\lambda)^{2}} \right\rvert\, \\
+4 \left\lvert\, \frac{s^{3}}{(r-\lambda)^{4}}-\frac{s^{4}}{(r-\lambda)^{5}}+\frac{s^{2}}{(r-\lambda)^{3}}-\frac{s^{3}}{(r-\lambda)^{4}}+\frac{s}{(r-\lambda)^{2}}-\right.
\end{gathered}
$$

$$
\left.\frac{s^{2}}{(r-\lambda)^{3}} \right\rvert\,+\cdots
$$

$$
=\left|\frac{s}{(r-\lambda)^{2}}\right|+2\left|\frac{s^{2}}{(r-\lambda)^{3}}\right|+3\left|\frac{1}{r-\lambda}-\frac{s^{3}}{(r-\lambda)^{4}}\right|+
$$

$$
4\left|\frac{s}{(r-\lambda)^{2}}-\frac{s^{4}}{(r-\lambda)^{5}}\right|+\cdots
$$

$$
=\left|\frac{s}{(r-\lambda)^{2}}\right|+2\left|\frac{s^{2}}{(r-\lambda)^{3}}\right|+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s^{3}}{(r-\lambda)^{3}}\right|(3+
$$

$$
\left.4\left|\frac{s}{r-\lambda}\right|+5\left|\frac{s}{r-\lambda}\right|^{2}+\cdots\right)
$$

$$
\begin{aligned}
& =\left|\frac{s}{(r-\lambda)^{2}}\right|+2\left|\frac{s^{2}}{(r-\lambda)^{3}}\right|+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s^{3}}{(r-\lambda)^{3}}\right| \\
& +\left(\sum_{n=0}^{\infty}(n+3)\left|\frac{s}{r-\lambda}\right|^{n}\right)
\end{aligned}
$$

Recursively, we obtain

$$
S_{k}=\left|\frac{s}{(r-\lambda)^{2}}\right|\left[1+2\left|\frac{s}{r-\lambda}\right|+3\left|\frac{s}{r-\lambda}\right|^{2}+\cdots+(k-1)\left|\frac{s}{r-\lambda}\right|^{k-2}\right]
$$

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

$$
\begin{gathered}
+\left|\frac{1}{r-\lambda}\right|\left|1-\frac{s^{k}}{(r-\lambda)^{k}}\right|+\left(\sum_{n=0}^{\infty}(n+k)\left|\frac{s}{r-\lambda}\right|^{n}\right) \\
=\left|\frac{s}{(r-\lambda)^{2}}\right| M_{k}+\left|\frac{1}{r-\lambda}\right| N_{k}
\end{gathered}
$$

Where

$$
\begin{gathered}
M_{k}=1+2\left|\frac{s}{r-\lambda}\right|+3\left|\frac{s}{r-\lambda}\right|^{2}+\cdots+(k-1)\left|\frac{s}{r-\lambda}\right|^{k-2} \\
M_{k}=\sum_{n=0}^{k-2}(n+k)\left|\frac{s}{r-\lambda}\right|^{n} \\
N_{k}=\left|1-\frac{s^{k}}{(r-\lambda)^{k}}\right|\left(\sum_{n=0}^{\infty}(n+k)\left|\frac{s}{r-\lambda}\right|^{n}\right)
\end{gathered}
$$

Clearly

$$
\sup _{k} \frac{1}{k} M_{k}<\infty
$$

Further

$$
\frac{1}{k} N_{k}=\left|1-\left(\frac{s}{r-\lambda}\right)^{k}\right|\left(\frac{1}{k} \sum_{n=0}^{\infty} n\left|\frac{s}{r-\lambda}\right|^{n}+\sum_{n=0}^{\infty} n\left|\frac{s}{r-\lambda}\right|^{n}\right)
$$

Then $\sup _{k} \frac{1}{k} N_{k}<\infty$ since $\left|\frac{s}{r-\lambda}\right|<1$, and so

$$
\begin{aligned}
& \sup \frac{1}{k} S_{k}=\sup _{k} \frac{1}{k} \sum_{n=0}^{\infty} n\left|\sum_{v=1}^{k}\left(c_{n v}-c_{n+1, v}\right)\right| \\
= & \left|\frac{s}{(r-\lambda)^{2}}\right| \sup \frac{1}{k} M_{k}+\left|\frac{1}{r-\lambda}\right| \begin{array}{c}
\sup \frac{1}{k} \frac{1}{k} N_{k}<\infty \\
k
\end{array}
\end{aligned}
$$

This implies that $\lambda \notin \delta(B(r, s), h)$.thus

$$
\delta(B(r, s), h) \subseteq\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}
$$

Conversel, let $\lambda \notin \delta(B(r, s), h)$ then $(B(r, s)-\lambda I)^{-1} \in B(h)$ Since $(B(r, s)-\lambda I)^{-1}$ Transform of the unit sequence $e_{0}=(1,0,0, \ldots)$ is in h that is

$$
(B(r, s)-\lambda I)^{-1} e_{0}=\left(\frac{1}{r-\lambda}, \frac{s}{(r-\lambda)^{2}}, \frac{s^{2}}{(r-\lambda)^{3}}, \ldots\right) \in h
$$

Then $\lambda \neq r$ and $|(s /(r-\lambda))| \leq 1$. Therefore, $\lambda \notin\{\lambda \in \mathbb{C}:|\lambda-r|<$ $|s|\}$. Thus

	مجـلة الـتـربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

$$
\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\} \subseteq \sigma(B(r, s), h) .
$$

Since the spectrum of any bounded linear operator is compact, we have

$$
\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\} \subseteq \sigma(B(r, s), h) .
$$

This completes the proof.
Theorem 2.3. The operator $B(r, s)$ has no eigenvalues in h.
Proof. Suppose $B(r, s) x=\lambda x$ for $x=\left(x=\left(x_{k}\right)_{k=1}^{\infty} \in h, x \neq \theta\right.$. Then by solving the system of equations

$$
\begin{aligned}
& r x_{1}=\lambda x_{1} \\
& s x_{1}+r x_{2}=\lambda x_{2} \\
& s x_{2}+r x_{3}=\lambda x_{3} \\
& \quad \vdots \\
& s x_{k}+r x_{k+1}=\lambda x_{k+1} \\
& \quad \vdots
\end{aligned}
$$

we obtain

$$
(r-\lambda) x_{1}=0 \text { and } s x_{k}+(r-\lambda) x_{k+1}=0, k \geq 1 .
$$

If $\lambda=r$, we have $x=\theta$. Also, if $\lambda \neq r$, we would have $x=\theta$. So $\sigma_{p}(B(r, s), h)=\emptyset$.

Theorem 2.4. The point spectrum of the adjoint operator $B(r, s)^{*}$ on h^{*} is given by

$$
\sigma_{p}\left(B(r, s)^{*}, h^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\} .
$$

Proof. Suppose that $B(r, s)^{*} f=\lambda f$ for $f=\left(f_{1}, f_{2}, f_{3}, \ldots\right) \neq \theta$ in $h^{*} \cong \sigma_{\infty}$. Then by solving the system of equations

$$
\begin{gathered}
(r-\lambda) f_{1}=-s f_{2} \\
(r-\lambda) f_{2}=-s f_{3} \\
\vdots \\
(r-\lambda) f_{k}=-s f_{k+1}
\end{gathered}
$$

we obtain

| مarnal of Educational |
| :--- | :---: | :---: |
| ISSN: 2011-421X |
| Arcif Q3 |

$$
f_{k+1}=\left(\frac{\lambda-r}{s}\right)^{k} f_{1}, k=1,2, \cdots
$$

Therefore, we must take $f_{1} \neq 0$ since otherwise we would have $f=\theta$. Also, it is clear that $r \in \sigma_{p}\left(B(r, s)^{*}, h^{*}\right)$. On the other hand, if $\lambda \neq r$, then $f_{k} \neq 0$ for all $k \in \mathbb{N}$ and

$$
\begin{array}{r}
\sup _{n} \frac{1}{n+1}\left|\sum_{k=1}^{n} f_{k}\right|=\sup _{n} \frac{1}{n+1}\left|\sum_{k=1}^{n}\left(\frac{\lambda-r}{s}\right)^{k-1} f_{1}\right| \\
=\left|f_{1}\right| \sup _{n}\left(\frac{1}{n+1}\right)\left|\sum_{k=1}^{n}\left(\frac{\lambda-r}{s}\right)^{k-1}\right| \\
\leq\left|f_{1}\right| \sup _{n} \frac{1}{n+1}\left[1+\left|\frac{\lambda-r}{s}\right|+\left|\frac{\lambda-r}{s}\right|^{2}+\ldots+\left|\frac{\lambda-r}{s}\right|^{n-1}\right],
\end{array}
$$

which is finite for all $\lambda \in\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$. Thus

$$
\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\} \subseteq
$$

$\sigma_{p}\left(B(r, s)^{*}, h^{*}\right)$.
The second inclusion follows immediately from the fact that

$$
\sigma_{p}\left(B(r, s)^{*}, h^{*}\right) \subseteq \sigma\left(B(r, s)^{*}, h^{*}\right)=
$$

$\sigma(B(r, s), h)$.
This completes the proof.
Lemma 2.1. [25, Page 59]. If T is a bounded linear operator on a normed space X into a normed space Y, then T has a dense range in Y if and only if $\left(T^{*}\right)^{-1}$ exists.

Lemma 2.2. [25, Page 60]. T has a bounded inverse if and only if T^{*} is onto.

Lemma 2.3. [11, pp. 20; 14, pp. 38]. If T is a linear operator on a complex normed space X into itself, then $I I I_{1}(T, X)$ is an open set.

Lemma 2.4. If T is a bounded linear operator on a Banach space X into itself, then

$$
\sigma_{r}(B(r, s), h)=\sigma_{p}\left(B(r, s)^{*}, h^{*}\right) \backslash
$$

$\sigma_{p}(B(r, s), h)$.
Proof. For $\lambda \in \sigma_{p}\left(T^{*}, X^{*}\right) \backslash \sigma_{p}(T, X)$, the operator $T-\lambda I$ is one to one and hence has an inverse. But $T^{*}-\lambda I$ is not one to one. Now, Lemma 2.1 yields the fact that the range of the operator $T-\lambda I$ is not dense in X. This implies that $\lambda \in \sigma_{r}(B(r, s), h)$.

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثبدر العربي 20

Theorem 2.5. The residual spectrum of the operator $B(r, s)$ on h is given by

$$
\sigma_{r}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\} .
$$

Proof. From Lemma 2.4 and Theorems 2.3 and 2.4, we obtain the desired consequence.

Theorem 2.6. The continuous spectrum of the operator $B(r, s)$ on h is

$$
\sigma_{c}(B(r, s), h)=\emptyset
$$

Proof. Since $\sigma(B(r, s), h)$ is the union of the disjoint sets $\sigma_{p}(B(r, s), h)$, $\sigma_{r}(B(r, s), h)$ and $\sigma_{c}(B(r, s), h)$, then Theorems 2.2, 2.3 and 2.5 imply $\sigma_{c}(B(r, s), h)=\emptyset$.

Next, we investigate the fine structure of the spectrum of the operator $B(r, s)$ with respect to the other classification schemes.

Indeed, for the operator $B(r, s)$ on the Hahn space h , we have

$$
I_{3}(B(r, s), h)=I I_{3}(B(r, s), h)=I I I_{3}(B(r, s), h)=\emptyset
$$

since

$$
\sigma_{p}(B(r, s), h)
$$

Also

$$
I I_{2}(B(r, s), h)=\emptyset
$$

since

$$
\sigma_{c}(B(r, s), h)=\emptyset
$$

Moreover

$$
I_{2}(B(r, s), h)=\emptyset
$$

by the closed graph theorem. Also
$I I I_{1}(B(r, s), h) \cup I I I_{2}(B(r, s), h)=\sigma_{r}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq$ $|s|\} . \quad 2.2$

Next, we completely determine the parts $I I I_{1}(B(r, s), h)$ and $I I I_{2}(B(r, s), h)$. This gives a finer subdivision of the spectrum.

Theorem 2.7. The following statements hold:

1. $I I I_{1}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\}$,
2. $I I I_{2}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r|=|s|\}$.

Proof. (i) Let $\lambda \in\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\}$. Then $\lambda \in \sigma_{p}\left(B(r, s)^{*}, h^{*}\right)$ by Theorem 2.4, that is, $\left(B(r, s)^{*}-\lambda I\right)^{-1}$ does not exist. So $B(r, s)^{*}-\lambda I$ is injective, which implies by Lemma 2.1 that, $B(r, s)-\lambda I$ has not a dense

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

range; $\overline{R(B(r, s)-\lambda I)} \neq h$. Also, $\lambda \notin \sigma_{p}(B(r, s), h)$ by Theorem 2.3. Hence $B(r, s)-\lambda I$ has an inverse. Next, we must prove that $(B(r, s)-$ $\lambda I)^{-1}$ is bounded, it suffices to show that $B(r, s)^{*}-\lambda I$ is onto, and then we use Lemma 2.2. For this purpose, given $y=\left(y_{k}\right)_{k=0}^{\infty} \in h^{*} \cong \sigma_{\infty}$, we must find $x=\left(x_{k}\right)_{k=0}^{\infty} \in \sigma_{\infty}$ such that $\left(B(r, s)^{*}-\lambda I\right) x=y$. Direct calculations show that

$$
(r-\lambda) x_{k}+s x_{k+1}=y_{k}, \text { for all } k \in \mathbb{N}
$$

Then we have

$$
\begin{gathered}
x_{1}=\frac{1}{s} y 0+\frac{(\lambda-r)}{s} x_{0} \\
x_{2}=\frac{1}{s} y 1+\frac{(\lambda-r)}{s^{2}} y 0+\frac{(\lambda-r)^{2}}{s^{2}} x 0 \\
x_{3}=\frac{1}{s} y 2+\frac{(\lambda-r)}{s^{2}} y 1+\frac{(\lambda-r)^{2}}{s^{2}} y 0+\frac{(\lambda-r)^{3}}{s^{3}} x 0 \\
\vdots \\
x_{k}=\frac{1}{s} y 0+\frac{(\lambda-r)}{s^{2}} y k-2+\frac{(\lambda-r)^{k-3}}{s^{k-2}} y 2+\frac{(\lambda-r)^{k-2}}{s^{k-1}} y 1 \\
+\frac{(\lambda-r)^{k-1}}{s^{k}} y 0+\frac{(\lambda-r)^{k}}{s^{k}} x 0
\end{gathered}
$$

So. We obtain

$$
\begin{gathered}
\sum_{k=0}^{n} x k=\frac{1}{s} y 0\left(\frac{\lambda-r}{s}\right)^{n-1}+\frac{1}{s}(y 0+y 1)\left(\frac{\lambda-r}{s}\right)^{n-2} \\
+\frac{1}{s}(y 0+y 1+y 2)\left(\frac{\lambda-r}{s}\right)^{n-3} \\
+\cdots+\frac{1}{s}\left(y 0+y 1+\cdots+y_{n-2}\right)\left(\frac{\lambda-r}{s}\right)+\frac{1}{s}\left(y 0+y 1+\cdots+y_{n-1}\right) \\
+\left|1+\frac{\lambda-r}{s}+\frac{(\lambda-r)^{2}}{s^{2}}+\cdots+\frac{(\lambda-r)^{n}}{s^{n}}\right| x 0
\end{gathered}
$$

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

Then

$$
\begin{aligned}
\left|\sum_{k=0}^{n} x k\right| \leq & \frac{1}{|s|}|y 0|+\left|\frac{\lambda-r}{s}\right|^{n-1}+\frac{1}{|s|}|y 0+y 1|\left|\frac{\lambda-r}{s}\right|^{n-2} \\
& +\frac{1}{|s|}|y 0+y 1+y 2|\left|\frac{\lambda-r}{s}\right|^{n-3}+\cdots \\
& +\frac{1}{|s|}|y 0+y 1+\cdots+y n-2|\left|\frac{\lambda-r}{s}\right| \\
& +\frac{1}{|s|}|y 0+y 1+\cdots+y n-1| \\
& +\left[1+\left|\frac{\lambda-r}{s}\right|+\left|\frac{\lambda-r}{s}\right|^{2}+\cdots+\left|\frac{\lambda-r}{s}\right|^{n}\right]|x 0|
\end{aligned}
$$

Since $\sum_{k=0}^{\infty}\left|\frac{\lambda-r}{s}\right|^{k}$ and $\sup _{n} \frac{1}{n+1} \sum_{k=0}^{n}\left|\frac{\lambda-r}{s}\right|^{k}$ are finite for all $\lambda \in\{\lambda \in$ $\mathbb{C}:|\lambda-r|<|s|\}$, then $\sup _{n} \frac{1}{n+1}\left|\sum_{k=0}^{n} x_{k}\right|<\infty$. That is $x=\left(x_{k}\right)_{k=0}^{\infty} \in$ σ_{∞}. Therefore $B(r, s)^{*}-\lambda I$ is onto, and so, we conclude that $\{\lambda \in$ $\mathbb{C}:|\lambda-r|<|s|\} \subseteq I I I_{1}(B(r, s), h)$. Further, by Lemma 2.3, we have

$$
I I I_{1}(B(r, s), h) \subseteq \operatorname{int}(\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\})=\{\lambda \in \mathbb{C}:|\lambda-r|<
$$ $|s|\}$.

(2) Follows immediately from Eq. (2.2).

This completes the proof.
The relations given in Eq. (1.2) and Proposition 1.1(e) imply the next theorem.

Theorem 2.8. The following statements hold:
(i) $\quad \sigma_{a p}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r|=|s|\}$,
(ii) $\quad \sigma_{c o}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$,
(iii) $\quad \sigma_{\delta}(B(r, s), h)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$.

Now, we review the results concerning the spectra of the difference operator Δ on the Hahn sequence space [27], which are so related to our problem.

	مجـلة الـتـربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

We will show by introducing an example that some statements of the following theorem given in [27] are incorrect.

Theorem 2.9. [27]. The following statements hold:

$$
\begin{array}{cc}
\text { (i) } & \sigma(\Delta, h)=\{\lambda \in \mathbb{C}:|\lambda-1| \leq 1\}, \\
\text { (ii) } \sigma_{p}(\Delta, h)=\emptyset, \\
\text { (iii) } & \sigma_{p}\left(\Delta^{*}, h^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-1|<1\}, \\
\text { (iv) } & \sigma_{r}(\Delta, h)=\{\lambda \in \mathbb{C}:|\lambda-1|<1\}, \\
\text { (v) } & \sigma_{c}(\Delta, h)=\{\lambda \in \mathbb{C}:|\lambda-1|=1\}, \\
\text { (vi) } & \sigma_{a p}(\Delta, h)=\{\lambda \in \mathbb{C}:|\lambda-1| \leq 1\}, \\
\text { (vii) } & \sigma_{c o}(\Delta, h)=\{\lambda \in \mathbb{C}:|\lambda-1|<1\}, \\
\text { (viii) } & \sigma_{\delta}(\Delta, h)=\{\lambda \in \mathbb{C}:|\lambda-1| \leq 1\} .
\end{array}
$$

Firstly, we prove that $\lambda=2 \in \sigma_{p}\left(\Delta^{*}, h^{*}\right)$. Indeed, for $\theta \neq x=$ $\left(x_{k}\right)_{k=0}^{\infty} \in \sigma_{\infty}$ with $\Delta^{*} x=2 x$, we have

$$
\begin{aligned}
& x_{0}-x_{1}=2 x_{0} \\
& x_{1}-x_{2}=2 x_{1}
\end{aligned}
$$

Therefore $x_{n}=(-1)^{\mathrm{n}} x_{0}$. If $x_{0} \neq 0$, so $x \neq \theta$ and

$$
\begin{gathered}
\sup _{n}(1 /(n+1))\left|\sum_{k=0}^{n}(-1)^{k} x_{0}\right|=\left|x_{0}\right| \sup _{n}(1 /(n+1))\left|\sum_{k=0}^{n}(-1)^{k}\right|< \\
\infty .
\end{gathered}
$$

Then $x \in \sigma_{\infty}$.
This proves that the statement (iii), and consequently the statements given by (iv),(v),(vi) and (vii) in this theorem are incorrect. Applying our results in Theorems 2.4, 2.5, 2.6 and 2.8, we obtain

$$
\begin{aligned}
\sigma_{p}\left(\Delta^{*}, h^{*}\right) & =\{\lambda \in C:|\lambda-1| \leq 1\}, \\
\sigma_{r}(\Delta, h) & =\{\lambda \in \mathbb{C}:|\lambda-1| \leq 1\}, \\
\sigma_{c}(\Delta, h) & =\emptyset, \\
\sigma_{a p}(\Delta, h) & =\{\lambda \in \mathbb{C}:|\lambda-1|=1\}, \\
\sigma_{c o}(\Delta, h) & =\{\lambda \in \mathbb{C}:|\lambda-1| \leq 1\} .
\end{aligned}
$$

This completes the proof.

Conclusion

Refer to the literature, El-Shabrawy and Abu-Janah [9] gave results regarding the fine spectrum in general to study the problem on the sequence spaces $b v_{0}$ and h without any detailed proofs about the spectra

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثبدر العربي 20

of the operator $\Delta_{a b}$ over h. In [9], They determined the spectra of the operator $B(r, s)$ on $b v_{0}$ without any details about $B(r, s)$ on h. Our results are more general than the corresponding results in the existing literature $[4,7,8,10]$ and there are improvements in some proofs of the results.

References

[1] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator Δ over the sequence space $\ell_{p},(1 \leq p<\infty)$, Demonstratio Math. 39 (3) (2006), 585-595.
[2] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator Δ over the sequence space $b v_{p},(1 \leq p<\infty)$, Acta Math. Sin. (Engl. Ser.) 23 (10) (2007), 1757-1768.
[3] B. Altay, F. Başar, On the fine spectrum of the difference operator Δ on c_{0} and c, Inform. Sci. 168 (2004), 217-224.
[4] B. Altay, F. Başar, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c, Int. J. Math. Sci. 18 (2005), 3005-3013.
[5] J. Appell, E. De Pascale, A. Vignoli, Nonlinear Spectral Theory; de Gruyter Series in Nonlinear Analysis and Applications 10, Walter de Gruyter, Berlin, 2004.
[6] F. Başar, N. Durna, M. Yildirim, Subdivisions of the spectra for the generalized difference operator over certain sequence spaces, Thai J. Math. 9 (2) (2011), 279-289.
[7] H. Bilgiç, H. Furkan, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{p} and $b v_{p}$, $(1<p<\infty)$, Nonlinear Anal. 68 (2008), 499-506.
[8] A. J. Dutta, B. C. Tripathy, Fine spectrum of the generalized difference operator $B(r, s)$ over the class of convergent series, International Journal of Analysis, 2013, Art. ID 630436, 4 pp.
[9] S. R. El-Shabrawy, S. H. Abu-Janah, Spectra of the generalized difference operator on the sequence spaces $b v_{0}$ and h, Linear and Multilinear Algebra, dol:10.1080/03081087.1369492, accepted manuscript, 2017, 1-18.
[10] H. Furkan, H. Bilgiç, K. Kayaduman, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and $b v$, Hokkaido Math. J. 35 (2006), 893-904.
[11] H. A. Gindler, A. E. Taylor, The minimum modulus of a linear operator and its use in spectral theory, Studia Math. 22 (1962), 15-41.

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنّر العربي 20 2.5

[12] G. Goes, S. Goes, Sequences of bounded variation and sequences of Fourier coefficients I, Math. Z. 118 (1970), 93-102.
[13] H. Hahn, Über Folgen linear operationen, Monatsh. Math. 32 (1922), 3-88.
[14] C. J. A. Halberg, Jr., A. Samuelsson, On the fine structure of spectra, Math. Scand. 29 (1971), 37-49.
[15] K. Kayaduman, H. Furkan, The fine spectra of the difference operator Δ over the sequence spaces ℓ_{1} and $b v$, Int. Math. Forum 1 (24), (2006), 1153-1160.
[16] M. Kirişci, A survey on the Hahn sequence spaces, Gen. Math. Notes 19 (2) (2013), 37-58.
[17] M. Kirişci, The Hahn sequence spaces defined by Cesàro mean, Abstr. Appl. Anal., 2013, Art. ID 817659, 6 pp.
[18] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley \& Sons Inc., New York, Chichester, Brisbane, Toronto, 1978.
[19] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, London, 1970.
[20] W. C. Rao, The Hahn sequence spaces I, Bull. Calcutta Math. Soc. 82 (1990), 72-78.
[21] W. C. Rao, T. G. Srinivasalu, The Hahn sequence spaces II, Y.Y.U. J. Fac. Edu. 2 (1996), 43-45.
[22] W. C. Rao, N. Subramanian, The Hahn sequence spaces III, Bull. Malaysian Math. Sci. Soc. 25 (2002), 163-171.
[23] M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932.
[24] A. E. Taylor, Introduction to Functional Analysis, John Wiley \& Sons, Inc., New York, 1958.
[25] A. E. Taylor, C. J. A. Halberg, Jr., General theorems about a bounded linear operator and its conjugate, J. Reine Angew. Math. 198 (1957), 93-111.
[26] A. Wilansky, Summability Through Functional Analysis, NorthHolland Mathematics Studies, vol. 85, Amsterdam, New York, Oxford, 1984.
[27] M. Yeşilkayagil, M. Kirişci, On the spectrum of the forward difference operator on the Hahn space, Gen. Math. Notes 33 (2) (2016), 1-16.

	Journal of Educational ISSN: 2011-421X Arcif Q3	1.5

الصفحة	اسم الباحث	عنوان البحث	ت,
25-3	زهرة المهـي أبوراس فاطمة أحمد قناو	النسرّب الاراسي لاي طلاب الجامعات	1
43-26	علي فرج جامد فاطمة جبريل القايد	استعمالات الأرض اللزراعية في منطقة سوق الخمس	2
57-44	ابتسام عبد السلام كشيب	تأثير صناعة الإسمنت على البيئة مصنع إسمنت لبدة نموذجاً دراسة في الجغر افية الصناعي	3
84-58	عطية صالح علي الربيقي خالد رمضان الجربوع منصور علي سالم ظليفة	مفهوم الشعر عند نقاد القرن الرابع الهجري	4
106-85	فتحية علي جعفر أمنة محمد العكاشي ربيعة عثمان عبد الجليل	جودة الحياة لدى طلبة كلية التزبية بالخمس	5
128-107	Ebtisam Ali Haribash A.A.H. Abd EL-Mwla	An Active-Set Line-Search Algorithm for Solving MultiObjective Transportation Problem	6
140-129	مفنّاح سالم ثبوت	آليات بناء النص عند بدر شاكر السياب قر اءة في قصيدة تموز جيكور	7
155-141	مفتاح ميلاد الهريف جمعة عبد الحميد شنيب	الجرائم الالكترونية	8
176-156	Suad H. Abu-Janah	On the fine spectrum of the generalized difference over the Hahn sequence space $\boldsymbol{B}(\boldsymbol{r}, \boldsymbol{s}) \quad$ operator h	9
201-177	فوزية محمد الحوات سالمة محمد ضو	دراسة تأثير النضاد الكيميائي Allelopathy لمستخلصات بعض النجاتات Triticum aestivum L. الطبية على نسبة الانبات ونمو نبات القمح	10
219-202	سليمة محمد خضر	الأعداد الضبابية	11
240-220	S. M. Amsheri N. A. Abouthfeerah	On a certain class of $\boldsymbol{p}_{\text {-valent functions }}$ with negative coefficients	12
241-253	Abdul Hamid Alashhab	L'écriture de la violence dans la littérature africaine et plus précisément dans le théâtre Ivoirien Mhoi-Ceul comédie en 5 tableaux de Bernard B. Dadié	13
254-265	Shibani K. A. Zaggout F. N	Electronic Specific Heat of Multi Levels Superconductors Based on the BCS Theory	14

	مجــلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثير العربي 20

266-301	خالد رمضان محمد الجربوع عطية صالح علي الربيقي	أغراض الشعر المستجدة في العصر العباسي	15
302-314	M. J. Saad, N. Kumaresan Kuru Ratnavelu	Oscillation Criterion for Second Order Nonlinear Differential Equations	16
315-336	صالح عبد السلام الكيلاني ساره مفتاح الزني فـدو ظليل سالم	الققم الجمالية لفن الفسيفساء عند	17
337-358	عبدالمنعم امحمد سالم	مفهوم السلطة عند المعتزلة وإِوان الصفاء	18
359-377	أسماء حامد عبدالحفظ اعليجه	مستوى الوعى البيئي ودور بعض القيم الاجتماعية في رفعه لدى عينّ لـينة من طلاب كلية الآداب الو اقعة داخل نطاق مدينة الخمس.	19
378-399	بنور ميلاد عمر العماري	المؤسسات التعليمية ودورها في الو قاية من الانحر الت والجريمة	20
400-405	Mohammed Ebraheem Attaweel Abdulah Matug Lahwal	Application of Sawi Transform for Solving Systems of Volterra Integral Equations and Systems of Volterra Integro-differential Equations	21
406-434	Eman Fathullah Abusteen	The perspectives of Second Year Students At Faculty of Education in EL-Mergib University towards Implementing of Communicative Approach to overcome the Most Common Challenges In Learning Speaking Skill	22
435-446	Huda Aldweby Amal El-Aloul	Sufficient Conditions of Bounded Radius Rotations for Two Integral Operators Defined by q-Analogue of Ruscheweyh Operator	23
447-485	سعاد مفنّاح أحمد مرجان	مستوى الوعي بمخاطر النتلوث البيئي لاى معلمي المرحلة الثانوية بمدينة الخمس	24
486-494	Hisham Zawam Rashdi Mohammed E. Attaweel	A New Application of Sawi Transform for Solving Ordinary differential equations with Variable Coefficients	25
495-500	محمد على أبو النور فر ج مصطفى الهـار بشير على الطيب	استخدام التحليل الإحصائي لدر اسة العلاقة بين أنظمة الري وكمية المياه المستهكة بمنطقة سوق الخميس - الخس	26
501-511	نرجس ابر اهيم محمد	النقييم المنهجي للمو اد الرياضية و الاحصائية نسبة الى المو اد التخصصية لكلوم الحاسوب	27
512-536	بشري محمد الهيلي حنان سعيد العوراني عفاف محمد بالحاج	طرق التزبية الحدبثة للأطفال	28
537-548	ضو محمد عبد الهادي فاروق مصطفى ايور اوي زهرة صبحي سعيد نجاح عمران المهوي	در اسة للحد من الثلوت الكهرومغناطيسي باستخدام مركب ثاني أكسيد الحديد مع بوليمر حضض الاكتيك	29

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

549-563	Ali ahmed baraka Abobaker m albaboh Abdussalam a alashhab	Cloud Computing Prototype for Libya Higher Education Institutions: Concept, Benefits and Challenges	30
564-568	Muftah B. Eldeeb	Euphemism in Arabic Language: The case with Death Expressions	31
569-584	Omar Ismail Elhasadi Mohammed Saleh Alsayd Elhadi A. A. Maree	Conjugate Newton's Method for a Polynomial of degree $\mathrm{m}+1$	32
585-608	آمنة سالم عبد القادرقدروة آلاء عبدالسلام محمد سويسي ليلى علي محمد الجاعوك	الصحد النفسية وعلافتها بتفير الذات لدى عينة من طلبة كلية الآداب والعلوم / مسلانه	33
609-625	نجاة سالم عبد اله زريق	المساندة الاجتماعية لاى عبنة من المعلمات بمدينة تصر الأخبار وعلاقتها بيعض المتغيرات الديموغر افية "در اسة ميدانية"	34
626-640	محمد سالم ميلاد العابر	"أي" بين الآسمية و الفطلية عاملة ومعمولة	35
641-659	إٕر اهيم فر فج الحويج	التمييز في القر آن الكريم سورة الكهف ألْموذجا	36
660-682	عبد السلام ميلاد المركز رجعة سعيد الجنقاوي	المو ارد الطبيعة و البشرية السياحية بدينة طر ابلس (بلييا)	37
683-693	Ibrahim A. Saleh Abdelnaser S. Saleh Youssif S M Elzawiei Farag Gait Boukhrais	Influence of Hydrogen content on structural and optical properties of doped nano-a-Si:H/a-Ge: H multilayers used in solar cells	38
694-720	فر ج رمضان مفتاح الثبيلي	أجوبة الشيخ علي بن أبي بكر الحضيري $\text { (ت:1061 هـ - } 1650 \text { م) }$	39
721-736	علي خليفة محمد أجويلي	مفهوم الهوية عند محمد أركون	40
737-742	Mahmoud Ahmed Shaktour	Current -mode Kerwin, Huelsman and Newcomb (KHN) By using CDTA	41
743-772	Salem Msauad Adrugi Tareg Abdusalam Elawaj Milad Mohamed Alhwat	University Students' Attitudes towards Blended Learning in Libya: Empirical Study	42
773-783	Alhusein M. Ezarzah Aisha S. M. Amer Adel D. El werfalyi Khalil Salem Abulsba Mufidah Alarabi Zagloom	Integrated Protected Areas	43
784-793	عبد الرحمن المهاي ابومنجل	المظاهر ات بين المانعين والمجوزين	44
794-817	رضا القذفي بشير الاسمر	تنرجيحات الامام الباجي من خلال كتابه المنتقي " من باب العناقة و الو لاء الىى كتاب الجامع	45

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثر العربد 20

$818-829$	Fadela M. Elzalet Sami A. S. Noba omar M. A. kaboukah	IDENTIFICATION THE OPTIMUM PRODUCTION PROCESS OF THE HYDROGEN GAS	46
830			

