(6) At (12) saall Aheladly ALY pslall a2

Issue (12) Volume (6) Journal of Humanitarian and Applied Sciences

Soliton, hyperbolic function, and trigonometric function
solutions for (2 + 1)-dimensional coupled Burgers equation

Abdulmalik A. Altwaty (3, Saleh M. Hassan () and S.A. Hoda Ibrahim @®
(1) Department of Mathematics, Faculty of Science, Ain Shams University,
Abbassia 11566, Cairo, Egypt

@ Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

@ Department of Mathematics, Faculty of Science, University of Benghazi, AL KUFRA, Libya

united313e@yahoo.com

Abstract

In this work, the modified simple equation method, the (%)-expansion method, the

two variables (%, é)—expansion method, and tan(%)—expansion method have been applied

to extract new kink soliton, singular soliton, hyperbolic function, and trigonometric
function solutions of the (2 + 1)-dimensional coupled Burgers equation. Comparisons of
results and the efficiency of the methods have been discussed.
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1. Introduction

Solutions of some nonlinear partial differential equations play an important role for
understanding many physical phenomena in logical way. One of these equations which
arises in various areas such as fluid mechanics, the modeling of gas dynamics, and traffic
flow is Burgers equation [1 — 5]

U = UUy, + AVUy + DUy, + abuy, (1.1)
Uy = Vy, (1.2)

where the subscripts denote differentiations and a and b are constants such that a € R,
a # —1 and b € R. In the special case when a = 2,b = 0.5 and u, = 0, El-Sabbagh [1]
has obtained new various sequences of exact solutions by using combinations of the
Bdcklund transformations and the generalized tanh function expansion method. Kong [2]
obtained new explicit exact soliton-like solutions and multi-soliton solutions of equation
(1.1) and (1.2) by using the further extended tanh method. Wang [3] constructed a series
of exact solutions of equation (1.1) and (1.2) including rational, triangular, periodic wave
solutions, rational solitary wave solutions, and rational wave solutions by using a new
Riccati equation rational expansion method. Multiple kink solutions and multiple singular
kink solutions of equation (1.1) and (1.2) was derived by Wazwaz [4] using Hirota’s
bilinear method. Yan [5] obtained the variable separation solution with arbitrary number of
variable separated function of equation (1.1) and (1.2) by using the multi-linear variable
separation approach. Many powerful methods have been applied to extract the exact
solutions as well as the soliton solutions for the nonlinear partial differential equations.

Some of these methods are the modified simple equation method [6 — 10], The (%)-

expansion method [11 — 14], the two variables (%,%)—expansion method [15 — 19], the
improved tan(@)-expansion method [20 — 25], etc..

The objective of this work is to use four different methods, namely, the modified

. . G' . . G' .
simple equation method, the (=)-expansion method, the two variables (—,l)—expansmn
G G¢'G

method, and tan(@)—expansion method to extract new kink soliton, singular soliton,

hyperbolic function, and trigonometric function solutions of the (2 + 1)-dimensional
coupled Burgers equation. The article is organized as follows: Section 2 describes the four
mentioned methods. The exact solution is given in section 3. Applications of these
methods are given in section 4. Section 5 is devoted to discussion and conclusion.

2. Description of the modified simple equation method

Assume that we are given nonlinear partial differential equation of the form;
W (U, Uy, Up, Usye, Uty -+ ) = 0, 2.1

where W is a polynomial function. The main steps for solving equations (1.1) and (1.2)
using the modified simple equation method are;

Step 1: We use the wave transformation
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u=u({), (=x+y—ut, where { is a real function. (2.2)

Step 2: Substituting (2.2) into (2.1) yields an ordinary differential equation in { of the
form,;

Q(w,u'(9),, u" (9, u"(9),...) =0, (2.3)
where Q is a general polynomial.

Step 3: Assume that (2.3) has the formal solution;

u(@) =2, 0 (52, (2.4)

where D; are constants to be determined, such that Dy = 0, and () is an unknown
function to be determined later.

Step 4: Determining the positive integer N by balancing the highest order derivatives and
the nonlinear terms in equation (2.3).

Step 5: Substituting (2.4) into (2.3) and collecting all the coefficients of Y ~:((), i =
0,1,2,3, ... then setting each coefficient to zero, a set of algebraic equations is obtained for
Y*'(¢) and D;. Solving the system we find ¥*({), D; and the exact solution of (2.3).

3. Description of the (%)-expansion method

Assume that we are given a nonlinear partial differential equation of the form;
W (U, Uy, Up, Usye, Uty -+ ) = 0, (3.1
where W is a polynomial function.
Step 1: We use the wave transformation;
u=u({), {(=x+y—ut, where { is a real function, (3.2)

to transfer the partial differential equation (3.1) into an ordinary differential equation of
the form;

Qu, u'(9), u" (), u"({),...) =0, 3.3)
where Q is a general polynomial.

Step 2: Assume that (3.3) has the formal solution;

G' (¢ £
w@ =3 ki (50) (34)
where G ({) satisfies the equation.
G"+AG"+1G =0, (3.5)
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and k;, A, T are constants to be determined, such that ky # 0, and G is the general solution
of (3.5) which is of the form

vaZZat clcosh( ()+czsmh( () A 2
\/— \/— E ,A —41 >0,
2 cacosh(———— ()+clsmh( ()
Gl
S = | (3.6)
\ 4r-A? 61COS( O c2sin( 4“1 O _2 A2 —41<0
2 czcos(—()+clsm( () z ’

Step 3: Determining the positive integer N by balancing the highest order derivatives and
the nonlinear terms in equation (3.3).

Step 4: Substitute (3.4) and (3.5) into (3.3) and collect all the coefficients of (%)i, i =

0,1,2,3,... then setting each coefficient to zero, a set of algebraic equations are obtained.
Solving the system we find 4, T, u, and k;. Substitute back into (3.4) along with (3.6) we
get the exact solution of (3.3).

!
4. Description of the two variable (%, %)-expansion method

Consider the equation
G"(O)+A6G() —t=0, 4.1
G' 1
set ¢ = —, Y = —, then we get
G G
P =—¢*+p -2 Y =—¢y. (4.2)
The general solution for (4.1) is represented as follows

Case 1: For 1 < 0,
G(§) = Aysinh(vV=20) + Aycosh(V=10) + 7,
and we have
W2 = ij (P2 — 2T + ). (4.3)
Case 2: For 41 > 0,
G({) = Aysin(VAQ) + Azcos(VAQ) + 7,

and we have

A
l/)z = W (¢2 - 21'1/) + /1) (44)

Case 3: For 4 =0,
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G($) =23% + A1 + Ay,

and we have

1

Y2 = oo (97 — 2y). 4.5)

Assume that we are given nonlinear partial differential equation of the form;
W (U, Uy, Up, Uy Unet, --- ) = 0, (4.6)
where W is a polynomial function.
Step 1: We use the wave transformation;
u=u({), {(=x+y—ut, where { is a real function, 4.7)

to transfer the partial differential equation (4.6) into an ordinary differential equation of
the form;

Qwu' (), u" (), u"(),...) =0, (4.8)
where Q is a general polynomial.
Step 2: Assume that (4.8) has the formal solution;

u(@) =X, a;p" + XiL, bid' M,
where a;, b;, i = 1,2,3,..., N are constants to be determinant.

Step 3: Determining the positive integer N by balancing the highest order derivatives and
the nonlinear terms in equation (4.8).

Step 4: Substitute (4.3) for 4 < 0, (4.4) for 1 > 0, (4.5) for A = 0 and (4.9) into (4.8) and
collect all the coefficients of ¢p and Y where the degree of 1 is less than or equal to 1. Set
each coefficient to zero, a set of algebraic equations are obtained. Solving the system using
Matlab we find A, 7, u, b;, and q;.

5. Description of tan(%)-expansion method

Assuming that we are given a nonlinear partial differential equation of the form

W (U, Uy, Up, Usere, Uty -+ ) = 0, (5.1
where W is a polynomial function. The main steps of tan(%) expansion method are:

Step 1: Substituting the wave transformation
ulx,y,t,...)=u({), {(=x+y—ut, where { is a real function .(5.2)

Substituting (5.1) into (5.2) yields an ordinary differential equation in { of the form.
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Qu,u' (9, u" (O, u"({),...) =0, (5.3)
where Q is a general polynomial.

Step 2: Assume that (5.3) has the formal solution

u(Q) =YN, 6 [P + tan(¢(o)] + YN, g [P + tan(qb(o)] , (5.4)

where i = 1,2,3,..., N, §; and o; are constants to be determined, such that 6,y # 0, gy # 0
and ¢ = ¢({) satisfies the following equation

¢'(¢) = asin(¢(9)) + Beos(p(9)) +v

Step 3: Determining the positive integer N by balancing the highest order derivatives and
the nonlinear term in equation (5.3).

Step 4: Substituting the result into (5.3) and collecting all the coefficients of tan(qﬁ(o) and

¢(€))z

cot(—=)" then setting each coefficient to zero, we get a set of algebraic equations.

Step 5: Solve the system using Matlab or Mathematica then substitute the values of &,
01,.-.» Oy, 01, Og,..., Oy, U, P 1n (5.4) we get the solution.

6. The exact solution

Using the substitutions u(x,y,t) = u({) and v(x,y,t) = v({) where { = x +y —
ut into equations (1.1) and (1.2) we get

—uu' = uu' + avu' + bu" + abu” (6.1)
u' =v', (6.2)

Setting ¢ = 0 in the integral form u = v + ¢ of equation (6.2) gives
pu' + (1 + )uu' + b(1 + a)u” = 0. (6.3)

The exact solution of this equation is thus given by

(@) = v(§) = g (tanh (o) - 1), (6.4)

7. On solving (1.1) and (1.2) using the modified simple equation
method

Balancing u’ and u? in equation (6.3) we get N + 1 = 2N, i.e. N = 1. Substituting
into equation (2.4) gives

u({) = Dy + D, (lf;'(f))), (7.1)
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which on substituting into (6.3) and collecting all the coefficients of ¥°({), Y ~1({) and
Y ~2({) and setting them equal to zero we get a set of algebraic equations in the unknowns
Dy, and D;. Solving this system using Matlab we get

Case 1: For Dy = 0 and D; = 2b we have the exact solution

N
2 bwye PO+D)

u(§) =v() = (7.2)

__Kr
z_we A+’

where w; = e, c is the first integration constant and w, is the second integration
constant. When 4 = —b(1 + a) we have

u(@) =v@) =2bwi [—=—] (73)
— Ifw; = 1 and w, = 1, we obtain the kink soliton solution

u({) =v({) = b1+ tanh})], (7.4)
— If w; = 1 and w, = —1, we obtain the singular soliton solution

u(Q) =v(Q) =b[1+coth®)], (7.5)
Case 2: For Dy = (;L% and D; = 2b we have the exact solution

N ¢
2 b w,eb(+D

_ _
uO = =~ | | (7.6)
u
when yu = —b(1 + a) we get
e—%
W) =v()=2b+2bw, [m] (7.7)
— If w; = —1 and w, = 1, we obtain the kink soliton solution
u({) =v({) =2b—-b|1—tanh})|, (7.8)
— If w; = —1 and w, = —1, we obtain the singular soliton solution
u(() =v({) =2b-b|1-coth})]. (7.9)

8. On solving (1.1) and (1.2) using (%)-expansion method
Substituting N = 1 into equation (3.4) we get
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G'(¢
u@) = ko + ki (3), (8.1)

1N b
Substituting into equation (6.3) and collecting all the coefficients of (GT(O) , 1=0,1,2

setting them equal to zero we obtain a set of algebraic equations in the unknowns A, 7, k),
and k. Solving this system using Matlab we get

4 a2 b2t+8a b?t+4 b2t+u? bA—
J ko= 2L and k, = 2.

T=-TA=4% (1+a) > 0T (14a

— For A2 — 47 > 0, we get the hyperbolic function solution

VA2-at . ANAZ-at
_ h + h
u(() = v() = 2B 4 pyVFT — g (2 T OO 7 D)4 (g9
(1+a) czcosh( A 2_‘”()+clsinh(—)L 2_476) 2

— For A2 — 41 < 0, we get the trigonometric function solution

cqcos 4T_)LZZ)—czsin 4le{) 1
2 - (8.3)

2

Jar—22 c)_l_clsin(\/zttz—)lz 0

w(@Q) =v() = — 2 4 pVar — 12

(1+a)

2

!
9. On solving (1.1) and (1.2) using the two variables (%,%)-expansion
method
Substituting N = 1 in equation (4.9) we get

u(¢) =ag +a,¢ + by, .1

Substituting into equation (6.3) and collecting all the coefficients of ¢* i, and ¢1p where
i = 0,1,2 setting them equal to zero yields a set of algebraic equations in the unknowns A,
ay, ai, and by. Solving this system using Matlab we get

— For A < 0, we have the hyperbolic function solutions

’2_2
12 M b b _y Af—-A5+1
) 1~

Casel: 1= ——— q,=— a, =
aZb2+2ab2+b2’> 0 (1+a)’ 1 (1+a)

)

cQ 4 quAH%H( L). 9.2)

Ly — B L
u@) =v(Q) = (H@+b(mo 1+ \6(@)

/2_2
12 M b b = u [AT—A5+1
) 1=

Case2: \l=————— ap=———, Q4 =
aZb2+2ab2+b2’> 0 (1+a)’ 1 (1+a)

)
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u@) = v(§) =~ b (LD) AR (1)) 9.3)

(1+a) 6@ (1+a)  \G()

where G(¢) = A;sinh(vV=2¢) + A,cosh(V=20) + =, 7= —1, and A,, A, are arbitrary
constants.

— For A > 0, we have the trigonometric function solutions

2 U fA%—A§+1

U u
Casel: l=——— ap = — a,=b, by =
a?b2+2ab2+b2> O (1+a)’ 1 > 71

(1+a)

u@) =v(Q) = — == +b($E) + NAM“( =), 9.4)

(1+a) G (1+a) GO
2 u U /A%—A§+1
Case2: \=————, ap=———,a,=b, by = ————,
aZb2+2ab2+b?2 (1+a) (1+a)

W) =v(() = ——E—+b (G'“)) - ”A%_A%H( —). (9.5)

(1+a) G0 (1+a)  \G()

Where G({) = A;sin(VAQ) + A,cos(VA{) +=, t=—1, and A,, A, are arbitrary
constants.

— For 4 = 0, we have q, = — a; =0, and b; = 0. In this case we obtained

_*
(1+a)’
the rejected trivial solution.

10. On solving (1.1) and (1.2) using tan(%)-expansion method

Substituting N = 1 in equation (5.4) we have

u(Q) = 8o+ 8,[p + tan(ED)] + 0y [p + tan (B 1. (10.1)
)
2
equal to zero we obtain a set of algebraic equations in the unknowns 6,, 8;, o4, p, and pu.

Solving this system using Matlab we get

§o =b[(a +p(B—¥)) Fbya?+p2—y2], 6, =0,
oy =b[B+y—2ap —p*(B-V)], p =D,

and u = +b(1 + a)/a? + B? — y2.

Substituting into (10.1) we get

Substituting into equation (6.3) and collect all the coefficient of tan™(—=) setting them
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— — 91
u(@) =v({) =6 + I (10.2)

Using family 1, 2, 3, 4 and 5, which can be found in [20,21,25], we obtained the
following solutions

01

w () =v() =05+ e e\ (10.3)
(p : 5:, B~y tan( 2 s))
uz({) =v({) = 6o + Jazwz_: T\ (10.4)
(p : ﬁ‘fya 7o tanh(C—; {))
u3() =v(§) = 8 + — (10.5)
<p t g t ‘ [:ﬁ tanh( ¢ ;B {))
uy(Q) =v(§) = 8 + — (10.6)
(p z+ yy—a tan( yz_a .,))
L (10.7)

us(¢) =v({) = 6o + —
<p+ \/%tanh(“ﬁ it c)>

11. Discussion and conclusion

Solutions using the four mentioned methods have been plotted verses the exact solution
(6.4) in some selected cases to depict the agreement of results whena =1, b = 0.1, u =
—-0.2, y=1, t=1, and —15 < x < 15. Figures (1) (a) represents the kink soliton
solution using the modified simple equation method (7.4), verses the exact solution.

Figure (1) (b) compares the hyperbolic function solution (8.2) due to the (%,)-expansion
method with the exact solution for 7 = —0.25, A =0, ¢; =0, and ¢, = 1. Figure (1) (¢)
depicts the hyperbolic function solution (9.2) due to the (%’,%)-expansion method against
the exact solution for 7 =—-1, A =-1, A; =0, and A, = 1. Figure (1) (d) represents
the trigonometric function solution (10.6) due to tan(%)-expansion method for a = 1.28,

B =0, y=0.8, and p = —15. Our solutions are considered new compared with other
results in [1 — 5].
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Exact solution
—-—-— Modified simple equation

Exact solution
—-—-— The (G/G,1/G)-expansion

Exact solution
tan (phi(zeta)/2)-expansion

L L L
-15 -10 -5 0 5 10 15 -15 -10
X X

Figure 1: The Exact solution vs: (a) the modified simple equation method, (b) the (%)-

(4(9)
).

expansion method, (c) the (%,%)—expansion method, (d) the tan(T
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