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Abstract

The purpose of this paper is to obtain some common fixed point theorems in
fuzzy 2-metric space under the condition of occasionally weakly compatible
mappings.

Keywords: Fuzzy 2-metric space, occasionally weakly compatible mappings,
coincidence point and common fixed point.

1. Introduction

It proved a turning point in the development of fuzzy mathematics when
the notion of fuzzy set was introduced by Zadeh [8] in 1965. Since then, many
authors developed the theory of fuzzy sets and its applications. Following the
concept of fuzzy sets, fuzzy metric spaces have been introduced by Kramosil
and Michaleck [5] in 1975 which was later modified by George and
Veeramani [1] with the help of continuous t-norm in 1994. Consequently in
due course of time some metric fixed point results were generalized to fuzzy
metric spaces by various authors. Later in 2008, Kumar [17] defined the
concept of fuzzy 2-metric space akin to 2-metric space which was introduced
by Géhler [12] and obtained a generalization of Banach contraction principle
in fuzzy 2-metric spaces. In 1998, Jungck and Rhoades [4] introduced the
notion of weakly compatible mappings in metric spaces, after that, Singh and
Jain [2] formulated the notion of weakly compatible mappings in fuzzy metric
spaces. This condition has further been weakened by introducing the notion of
occasionally weakly compatible mappings by Al-Thagafi and Shahzad [10].
While Khan and Sumitra [9] extended the notion of occasionally weakly
compatible mappings in fuzzy metric spaces and proved some common fixed
point theorems. In recent years, several authors proved various fixed point
theorems employing more generalized conditions in difference spaces [2], [3],
[6], [7], [11], [13], [14], [15], [16], [18], [19]. In this paper, we prove the
existence and uniqueness of some common fixed point theorems for pairs of
occasionally weakly compatible mappings in fuzzy 2-metric space by using
commutative conditions.

2. Preliminaries

Definition 2.1. Let X be any nonempty set. A fuzzy set M in X is a function
with domain X and values in [0,1].
Definition 2.2. A binary operation =: [0,1] x [0,1] — [0,1] is a continuous t-
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norm if it satisfies the following conditions:

(1) = is associative and commutative,

(2) = is continuous function,

(3)a*x1=aforall a € [0,1],

(4) a*b <cxdwhenevera<candb <dforalla,b,c,d € [0,1].
Examples of t-norm are a * b = ab and a * b = min {a, b}.
Definition 2.3. The 3-tuple (X, M,*) is called a fuzzy metric space if X is an
arbitrary set, x is a continuous t-norm and M is a fuzzy set in X X X X [0, )
satisfying the following conditions: for all x,y,z € X andt,s > 0

(DM(x,y,t) >0,

Q)M (x,y,t) =1forallt > 0ifand only if x =y,

@)M(x,y,t) = M(y,x, 1),

ADM(x,z,t+5s)=M(x,y,t) * M(y,z5),

(5)M(x,y,.):[0,00) — [0,1] is a left continuous function.
Note that, the function value M(x, y, t) can be considered as the degree of
nearness between x and y with respect to t.
Example: Let X = R. Definea *b = ab forall a,b € [0,1] and

-1
x —

M(x,y,t) = [expl ” yl]

forall x,y € X and t € (0, ). Then (X, M,*) is a fuzzy metric space.

Remark: Every metric d(x,y) induces a fuzzy metric M(x,y,t) by the

relation M(x,y,z,t) = t+d€xy) such a fuzzy metric is called standard fuzzy

metric.
Definition 2.4. Let X be a nonempty set and d be a positive real valued
function on X x X x X satisfies the following conditions:

(1) For distinct points x, y € X, there exists a point z € X such that

d(x,y,z) # 0,

(2)d(x,y,z) = 0 if at least two of x,y and z € X are equal,

3)d(x,y,z) =d(x,z,y) =d(y,z,x) Vx,y,z€X,

@ d(x,y,z) <d(x,y,w) +d(x,w,z) +d(w,y,z) Vx,y,zwEX,
Then the ordered pair (X,d) is called 2-metric space. Geometrically, a 2-
metric d(x, y, z) represents the area of a triangle with vertices x, y and z in the
Euclidean space.

Example: Let X = R3 and let d (x, v, z) the area of the triangle spanned by
x,y and z, which may be given explicitly by the formula,

d(x,y,z) = |x1 (V223 — ¥323) — x,(¥123 — Y321) + x3(V12; — ¥224)]
369
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Where x = (x1,x5,%3), ¥ = (V1,¥2,V3), Z = (24,25,23). Then (X,d) is a 2-
metric space.
Definition 2.5. An operation *: [0,1] X [0,1] x [0,1] — [0, 1] is called a
continuous t-norm if the following conditions are satisfied: for all
a,b,c,d,e,f € [0,1]

1) *(a,1,1) =a , *(0,0,0) =0,

(2)* (a,b,c) =+ (a,c,b) =* (b, a,c),

(3)* (x (a,b,c),d, e) == (a,x (b, c,d),e) = (a, b, (c,d, e)),

daxbxc<d=*exfwhenevera<d,b<eandc <f.

Examples of t-normare a * b * ¢ = abc and a * b x ¢ = min{a, b, c}.
Definition 2.6. The 3-tuple (X, M,*) is called a fuzzy 2-metric space if X is an
arbitrary set, * is a continuous t-norm and M is a fuzzy set in X X X X X X
[0, o0) satisfying the following conditions: for all x,y,z,w € X and t;, t,, t; >
0
(1) M(x,y,2z,0) =0,

(2) M(x,y,z,t) = 1forall t > 0 if and only if at least two of the three points
are equal,
B)YM(x,y,z,t) =M(x,z,y,t) = M(y,z,x,t) forall t > 0,

(Symmetry about first three variables)
A Mx,y,z,t; +t, +t3) = M(x,y,w, t;) * M(x,w, z,t,) * M(w, y, z, t3),

(This corresponds to tetrahedron inequality in 2-metric space)
(5) M(x,y,z,):[0,0) — [0,1] is left continuous .
Note that, The function value M(x,y,z t) may be interpreted as the
probability that the area of triangle formed by the three points x,y, z is less
than t.
Example: Let (X, d) be 2-metric space. For all x,y,z € X and t > 0 define

t

M —
(%.,2,) t+d(x,y,2)

Then (X, M,*) is a fuzzy 2-metric space. Such a fuzzy 2-metric space is
known as induced fuzzy 2-metric space.

Lemma 2.7. Let (X, M,*) be a fuzzy 2-metric space. Then M(x,y, z,.) is non-
decreasing function for all x,y,z € X.

Definition 2.8. A sequence {x,} in a fuzzy 2-metric space (X, M,*) is said to
converge to x in X if and only if rlli_)rzzoM (x,x,2z,t) =1 VzeXandt > 0.

370



.53 A dlaa
Common Fixed Point Theorems for Occasionally Weakly Compatible
Mappings in Fuzzy 2-Metric Space 12 aaadl

Definition 2.9. Let (X, M,*) be a fuzzy 2-metric space. A sequence {x,} in X
is called a Cauchy sequence if and only if lim M (x4, X, 2, t) =1 VzZ E
n—>0oo

X,meN,and t > 0.

Definition 2.10. A fuzzy 2-metric space (X, M,*) is said to be complete if and
only if every Cauchy sequence in X is convergent in X.

Definition 2.11. Let X be a nonempty set. An element x € X is called a
common fixed point of mappings F: X > X and T: X > X if x=T(x) =
F(x).

Definition 2.12. Let X be a nonempty set. The mappings F: X — X and
T: X — X are called commutative if T(F(x)) = F(T(x)) forall x € X.

Definition 2.13. Let X be a set, F and T be self-mappings of X. A point x in
X is called a coincidence point of F and T if and only if F(x) = T(x). We
shall call w = F(x) = T(x) a point of coincidence of F and T.

Definition 2.14. A pair of mappings F and T is called weakly compatible pair
if they commute at coincidence points.

Definition 2.15. Two self-mappings F and T of a set X are occasionally
weakly compatible if and only if there is a point x in X that is a coincidence
point of F and T at which F and T commute.

Lemma 2.16. Let X be a set, Fand T be occasionally weakly compatible self-
maps of X. If F and T have a unique point of coincidence, w = F(x) = T (x),
then w is the unique common fixed point of F and T.

Lemma 2.17. Let (X, M,*) be a fuzzy 2-metric space. If there exists k € (0,1)
such that M(x,y,z,kt) > M(x,y,z,t) for all x,y,z€ X and t > 0, then
X =Y.

3. Main Results
We have the following theorems.
Theorem 3.1. Let (X,M,x) be a complete fuzzy 2-metric space and let
S, T,A,B,P and Q be six self-mappings of X. Let the pairs {S,AB} and
{T, PQ} be occasionally weakly compatible and suppose that
AB = BA,AS = SA,BS = SB,TP = PT,PQ = QP and TQ = QT.
If there exists k € (0, 1) such that
M(Sx, Ty, z, kt)

M(ABx, PQy, z,t), M(Sx,ABx, z,t), 1

M(Ty, PQy,z,1) oo
for all x,y,z € X and for all t > 0, then there is a unique common fixed point
of S,T,A,B,P and Q.

= min{
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Proof. Since the pairs {S,AB} and {T,PQ} are occasionally weakly
compatible, so there are points x, y € X such that
Sx = ABx; SABx = ABSx and Ty = PQy; TPQy = PQTy.
We claim that Sx = Ty. If Sx # Ty, then there exists a positive real number ¢t
such that M(Sx, Ty, z,t) < 1. By inequality (1) we obtain
M(Sx, Ty, z, kt) = min {M(Sx, TI\}:I, (Z,I:;?'],]Z’(ZS’);’)SX' & t)’}

= min{M(Sx, Ty, z,t),1,1}

= M(Sx,Ty,z,t).
Therefore Sx = Ty, so we have Sx = ABx = Ty = PQy. Suppose that there
Is another point u such that Su = ABu then by inequality (1) we have Su =
ABu =Ty = PQy, s0o Sx = Su=w and w = Sx = ABx is the unique point
of coincidence of S and AB. By Lemma 2.16 w is the unique common fixed
point of S and AB. Similarly, there is a unique point r € X such thatr = Tr =
PQr.
Now assume that w # r. So we have

M(w,r,z, kt) = M(Sw,Tr, z, kt)

> min{M (ABw, PQr, z,t), M(Sw,ABw, z,t), M(Tr, PQr, z,t) }
= min{M(w,1,z,t),M(w,w, z,t), M(r,7,2,t)}
= min{M(w,1,z,t),1,1} = M(w, 1, z,t).
Therefore we have r = w, by Lemma 2.16 w is a common fixed point of
S,T,AB and PQ.
Putting x = Aw and y = w in inequality (1) we get
. (M(ABAw, PQw, z,t), M(SAw, ABAw, z, t),
M(SAw,Tw, z, kt) = mln{ M(Tw, PQw, 7,t) }
M(AABw,PQw, z,t), M(ASw, AABw, z, t),
M(Tw,PQw, z, t) }
M(Aw,w, 7, kt) > min{ M(Aw,w, z,t), M(Aw, Aw, z, t),}
M(w,w,z,t)
= min{M(Aw,w, z,t), 1,1} = M(Aw, w, z, t)
implies that Aw = w. Next, put x = Bw and y = w we obtain
. (M(ABBw, PQw, z,t), M(SBw,ABBw, z, t),
M(SBw,Tw, z, kt) = mm{ M(Tw, POw, z,t) }
M(BABw, PQw, z,t), M(BSw, BABw, z, t),
M(Tw, PQw, z,t) }

M(ASw,Tw, z, kt) = min {

M(BSw,Tw, z, kt) > min{
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M(Sw,w, z kt) > min { M(Bw,w,z,t),M(Bw, Bw, z, t),}
M(w,w,z,t)
= min{M(Bw,w, z,t),1,1} = M(Bw,w, z, t)
therefore Bw = w. By putting x = w and y = Pw we get
. (M(ABw,PQPw, z,t), M(Sw,ABw, z, t),
M(Sw,TPw,z, kt) > mln{ M(TPw, PQPw, z, t) }
M(ABw,PPQw, z,t), M(Sw, ABw, z, 1),
M(PTw, PPQw, z,t) }
M(w,Pw, z, kt) = min{ M(w, LME'PZV';%VA;I’(ZV’V;;N & t)'}
= min{M (w, Pw, z, t),1,1} = M(w, Pw, z, t)
thus Pw = w. Next, put x = w and y = Qw we have
. (M(ABw,PQQw, z,t), M(Sw,ABw, z, t),
M(Sw,TQw, z, kt) = min { M(TQw, PQQw, z,t) }
M(ABw, QPQw, z,t), M(Sw, ABw, z, t),
M(QTw,QPQw, z,t) }
M(w,Qw, z, kt) = min { M(w, %ngzvif)éx(zv,vé)w % t)'}
= min{M(w, Qw, z,t),1,1} = M(w, Qw, z, t)
hence Qw = w. From the previse procedure we have
Sw=Tw = Aw = Bw = Pw = Qw = w.
Therefore, w is a common fixed point of S, T, A, B, P and Q. The uniqueness of
the common fixed point holds from inequality (1).
Theorem 3.2. Let (X,M,x) be a complete fuzzy 2-metric space and let
S,T,A B,P and Q be six self-mappings of X. Let the pairs {S,AB} and
{T, PQ} be occasionally weakly compatible and suppose that
AB = BA,AS = SA,BS = SB,TP = PT,PQ = QP and TQ = QT.
If there exists k € (0, 1) such that
M(Sx, Ty, z kt) = ¢ (min{ M(ABx, PISE;,; QQI;I’(;;)ABQC “ t)'D (2)
for all x,y,z € X,t > 0 and ¢: [0, 1] = [0, 1] such that ¢ (h) > h for all 0 <
h < 1, then there exists a unique common fixed point of S, T, A, B, P and Q .
Proof. The proof follows from Theorem 3.1.
Theorem 3.3. Let (X,M,x) be a complete fuzzy 2-metric space and let
S,T,A B,P and Q be six self-mappings of X. Let the pairs {S,AB} and
{T, PQ} be occasionally weakly compatible and suppose that
AB = BA,AS = SA,BS = SB,TP = PT,PQ = QP and TQ = QT.
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If there exists k € (0, 1) such that
M(Sx, Ty, z, kt)
> ¢(M(ABx, PQy, z,t), M(Sx,ABx, z,t), M(Ty, PQy, z,t)) (3)
for all x,y,zeX,t >0 and ¢:[0,1] x[0,1] X [0,1] = [0,1] such that
@(h,1,1) > h for all 0 < h < 1, then there exists a uniqgue common fixed
pointof S,T,A, B, P and Q.
Proof. Since the pairs {S,AB} and {T,PQ} are occasionally weakly
compatible, there are points x,y € X such that Sx = ABx and Ty = PQy. We
claim that Sx = Ty. By inequality (3) we have
M(Sx,Ty,z kt) = @(M(ABx, PQy,z,t),M(Sx,ABx,z,t), M(Ty, PQy, z,t))
=o(M(Sx,Ty,zt), M(Sx,Sx,z,t), M(Ty, Ty, z,t))
=@o(M(Sx,Ty,z1),1,1)
> M(Sx,Ty,z,t)
Therefore Sx = Ty, so we have Sx = ABx = Ty = PQy. Suppose that there
Is another point u € X such that Su = ABu then by inequality (3) we have
Su=ABu =Ty = PQy, soSx =Su=wandw = Sx = ABx is the unique
point of coincidence of S and AB. By Lemma 2.16 w is the unique common
fixed point of S and AB. Similarly, there is a unique point r € X such that r =
Tr = PQr.
Now assume that w # r. So we have
M(w,r,z,kt) = M(Sw,Tr, z, kt)
>
<p(M(ABw, PQr,z,t),M(Sw,ABw, z,t), M(Tr, PQr, z, t))
= (p(M(W, r,zt),M(w,w,zt),M(r,r,z, t))
=oMw,r,z1t),1,1) > M(w,r,z,1t)
Therefore we have r = w, by Lemma 2.16 w is a common fixed point of
S,T,AB and PQ.
Putting x = Aw and y = w in inequality (3) we get
M(SAw,Tw, z, kt)
> <p(M(ABAW, PQw, z,t), M(SAw,ABAw, z,t), M(Tw, PQw, z, t))
M(ASw,Tw, z, kt)
> (p(M (AABw, PQw, z,t), M(ASw, AABw, z,t), M(Tw, PQw, z, t))
M(Aw,w, z, kt) > go(M(AW, w,z,t), M(Aw, Aw, z,t), M(w,w, z, t))
= o(M((Aw,w,z,t),1,1) > M(Aw,w, z, t)
implies that Aw = w. Next, put x = Bw and y = w we obtain
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M(SBw,Tw, z, kt)
> ¢(M(ABBw, PQw, z,t), M(SBw, ABBw, z,t), M(Tw, PQw, z,t))
M(BSw,Tw, z, kt) =
(p(M(BABW, PQw, z,t), M(BSw,BABw, z,t), M(Tw, PQw, z, t))
M(Sw,w, z, kt) =
<p(M(BW, w,z,t), M(Bw,Bw, z,t),M(w,w, 2z, t))
= o(M(Bw,w,zt),1,1) > M(Bw,w, z, t)
therefore Bw = w. By putting x = w and y = Pw we get
M(Sw,TPw, z, kt)
> ¢(M(ABw, PQPw, z,t), M(Sw, ABw, z,t), M(TPw, PQPw, z,t))
M(Sw, PTw, z, kt)
> (p(M(ABW, PPQw, z,t), M(Sw,ABw, z,t), M(PTw, PPQw, z, t))
M(w, Pw, z, kt)
> <p(M(w, Pw,z,t),M(w,w,zt), M(Pw, Pw, z, t))
=@o(M(w,Pw,zt),1,1) > M(w, Pw, z,t)
thus Pw = w. Next, put x = w and y = Qw we have
M(Sw,TQw, z, kt)
> (p(M(ABW, PQQw, z,t), M(Sw,ABw, z,t), M(TQw, PQQw, z, t))
M(Sw,QTw, z, kt)
> ¢(M(ABw, QPQw, z,t), M(Sw, ABw, z, t), M(QTw, QPQw, z, t) )
M(w,Qw,z, kt) =
<p(M(w, Qw,z,t),M(w,w,z,t), M(Qw, Qw, z, t))
=o(M(w,Qw,zt),1,1) > M(w, Qw, z, t)
hence Qw = w. From the previse procedure we have
Sw=Tw = Aw = Bw = Pw = Qw = w.
Therefore, w is a common fixed point of S, T, 4, B, P and Q. The uniqueness of
the common fixed point holds from inequality (3).
Theorem 3.4. Let (X, M,*) be a complete fuzzy 2-metric space and let S, A
and B be three self-mappings of X. Let the pair {S,AB} be occasionally
weakly compatible and suppose that AB = BA, AS = SA and BS = SB If there
exists a point k € (0,1) such that
M(Sx,Sy, z, kt)
M(ABx,ABy, z,t),
> aM(ABx,ABy, z,t) + f min{ M(Sx,ABx, z,t), (4)
M(Sy,ABy, z,t)
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for all x,y,zeX and t >0, where o, >0,a+ 3 >1. Then S,A and B
have a unique common fixed point.

Proof. Since the pair {S, AB} is occasionally weakly compatible, so there is a
point x € X such that Sx = ABx. Suppose that there exist another pointy €
X for which Sy = ABy. We claim that Sx = Sy. If Sx # Sy then by inequality
(4) we have
M(ABx,ABy, z,t),
M(Sx,Sy,z, kt) = aM(ABx,ABYy, z,t) + B min{ M(Sx,ABx,z,t),
M(Sy,ABy, z, t)
M(Sx,Sy,z,t),
= aM(Sx,Sy, z,t) + B min{ M(Sx,Sx, z,t),
M(Sy,Sy, z,t)
= (aM(Sx,Sy,z,t) + B min{M(Sx,Sy,zt),1,1})
= (a+ L)M(Sx,Sy,z,t)
which is contradiction, since (a + ) > 1, therefore Sx =Sy, so Sx =
ABx = Sy = ABy. Suppose that there is another point u € X such that Su =
Sy then by inequality (4) we have Su = ABu =Sy = ABy, SOSx =Su=w
and w = Sx = ABx is the unique point of coincidence of S and AB. By
Lemma 2.16, S and AB have a unique fixed point, which is w.
Putting x = Aw and y = w in inequality (4) we get
M(SAw, Sw, z, kt)
M(ABAw, ABw, z, t),
> aM(ABAw, ABw, z,t) + S min{ M (SAw, ABAw, z, t),
M(Sw,ABw, z, t)
M(ASw, Sw, z, kt)
M(AABw, ABw, z,t),
> aM(AABw,ABw, z, t) + S min< M(ASw, AABw, z, t),
M(Sw,ABw, z,t)
M(Aw,w, z, t),
M(Aw,w, z, kt) = aM(Aw,w, z,t) + B min<{ M(Aw, Aw, z, t),
M(w,w,z,t)
= aM(Aw,w, z,t) + f min{M (Aw,w, z,t), 1,1}
= (a+ B)M(Aw,w, z, t)
implies that Aw = w. Now, put x = Bw and y = w we obtain
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M(SBw, Sw, z, kt)

(M(ABBw, ABw, z, t),)
> aM(ABBw, ABw, z,t) + B min< M(SBw, ABBw, z, t),
M(Sw,ABw, z,t) )

g

\
M(BSw, Sw, z, kt)

(M(BABw, ABw, z, t),)
> aM(BABw, ABw, z,t) + B min< M(BSw, BABw, z,t), ¢
M(Sw,ABw, z,t) )
M(Bw,w, z,t),
M(Bw,w, z,kt) = aM(Bw,w, z,t) + f min{ M(Bw, Bw, z, t),
M(w,w,z,t)
= aM(Bw,w, z,t) + S min{M(Bw,w, z,t), 1,1}
= (a+ B)M(Bw,w, z,t)
Thus Bw = w. From the previse procedure we have
Sw = Aw = Bw = w.
Therefore, w is a common fixed point of S, A and B. The uniqueness of the
common fixed point holds from inequality (4).

\
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