	مجــة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثنر العربي 19 1.5

nجلةالتربوكا مجلة علمية محكمة تمار عنَكليةالتربية جامعة المرقبا

العدد التاسع عشر
يوليو 2021م

هيئـــة تحريـر

هجلة التربوي

اللمجلة ترحب بما يرد عليها من أبحاث وعلى استتداد لنشر ها بعد التحكيم . المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها كافة الآراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها يتحمل الباحث مسؤولية الأماتة العلمية وهو المسؤول عما ينشر له . -البحوث المقدمة للنشر لا ترد لأصحابها نشرت أو لم تنشر (حقوق الطبع محفوظة للكلية)

ضو ابط النشر :
يشترط في البحوث العلمية المقدمة للنشر أن ير اعى فيها ما يأني :
- أصول البحث العلمي وڤو اعده
- ألا تكون المادة العلمية قد سبق نشر ها أو كانت جز عا من رسالة علمية . - برفق بالبحث تز كية لغوية وفق أنموذج معد
- تعدل البحوث المقبولة وتصحح وفق ما ير اه المحكمون . - النز ام الباحث بالضو ابط الني وضعتهها المجلة من عدد الصفحات ، ونوع الخط ورقمه ، و الفتزات الزمنية الممنوحة للتعديل ، ومـا يستجد من ضو ابط تضعها المجلة مستقبلا . تثبيهات :

- للمجلة الحق في تعديل البحث أو طلب تعديله أو رفضد . - يخضـع البحث في النشر لأولويات المجلة وسياستها . - البحوث المنشورة تعبر عن وجهة نظر أصحابها ، ولا تعبر عن وجهة نظر المجلة .

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research.
2- The research articles or manuscripts should be original and have not been published previously. Materials that are currently being considered by another journal or is a part of scientific dissertation are requested not to be submitted.
3- The research articles should be approved by a linguistic reviewer.
4- All research articles in the journal undergo rigorous peer review based on initial editor screening.
5- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.
2- The research articles undergo to the policy of the editorial board regarding the priority of publication.
3- The published articles represent only the authors' viewpoints.
接

| Journal of Educational |
| :---: | :---: | :---: |
| ISSN: 2011-421X |
| Arcif Q3 |

Least-Squares Line

$$
\begin{aligned}
& \text { لطفية محمد الدالي } \\
& \text { قسم تحليل البيانات و الحاسوب / كلية الاقتصـاد والتجارة الخمس } \\
& \text { lmaldali@elmergib.edu.ly }
\end{aligned}
$$

Introduction:

We derive the method of finding a polynomial that best fits given data points a method that is extremely important to the natural sciences, social sciences, and engineering .
Let x be the vector of variables and b be the vector of constants.
We have seen that a system $A x=b$ of n equations in n variables, where A is invertible, has the unique solution $x=A^{-1} b$.
However, if $A x=b$ is a system of n equations in m variables, where n$\rangle \mathrm{m}$, the system does not , in general , have a solution and it is then said to be overdetermined .
A is not a square matrix for such a system, and A^{-1} does not exist. We will introduce a matrix called the pseudoinverse of A , denoted pinv (A), that leads to a least-squares solution $x=\operatorname{pinv}(A) b$ for an overdetermined system. This is not a true solution, but it is in some sense the closest we can get to a true solution for the system. We will see an application of overdetermined in finding curves that "best" fit data.

Definition [3]

Let $A \in M m \times n$. We define the adjoint of A to be the $n \times m$ matrix $\operatorname{adj}(A)$ or A^{*} such that $\left(A^{*}\right)_{i j}=A_{j i}$ for all i, j.

Definition [3]
The transpose A^{t} of an $n \times m$ matrix A is the $n \times m$ obtained from A by interchanging the rows with the columns; that is $\left(\mathrm{A}^{\mathrm{t}}\right)_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ji}}$

Definition :[11]
Let A be a matrix. The matrix $\left(A^{t} A\right)^{-1} A^{t}$ is called the pseudoinverse of A, and is denoted pinv (A).
We have seen that not every matrix has an inverse. Similarly, not every matrix has a pseudoinverse. The matrix A has pseudoinverse if $\left(\mathrm{A}^{t} \mathrm{~A}\right)^{-1}$ exists.
Example (1):-

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثئد العربي 19

Find the pseudoinverse of $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -1 & 3 \\ 2 & 4\end{array}\right]$
Solution:
We compute the pseudoinverse of A in stages

$$
\begin{gathered}
A^{t} A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
6 & 7 \\
7 & 29
\end{array}\right] \\
\left(A^{t} A\right)^{-1}=\frac{1}{\left|A^{t} A\right|} \operatorname{adj}\left(A^{t} A\right)=\frac{1}{125}\left[\begin{array}{cc}
29 & -7 \\
-7 & 6
\end{array}\right] \\
\operatorname{pinv}(A)=\left(A^{t} A\right)^{-1} A^{t}=\frac{1}{125}\left[\begin{array}{cc}
29 & -7 \\
-7 & 6
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & 4
\end{array}\right] \\
=\frac{1}{25}\left[\begin{array}{lll}
3 & -10 & 6 \\
1 & 5 & 2
\end{array}\right]
\end{gathered}
$$

Now we will use the concept of pseudoinverse to further our understanding of systems of linear equations.
Let $A x=b$ be a system of n linear equation in m variables with
$\mathrm{n}\rangle \mathrm{m}$, where A is of rank m . Multiply each side of this matrix equation by A^{t}, to get:-
$A^{t} A x=A^{t} b$ normal equation
such that $A^{t} A$ is symmetric matrix and Least - Squares solution x satisfies : $A^{t}(b-A x)=0$

The matrix $A^{t} A$ can be shown to be invertible for such system.
Multiply each side of this equation by $\left(A^{t} A\right)^{-1}$ and solve for x to get

$$
\begin{gathered}
\left(A^{t} A\right)^{-1}\left(A^{t} A x\right)=\left(A^{t} A\right)^{-1} A^{t} b \\
{\left[\left(A^{t} A\right)^{-1}\left(A^{t} A\right)\right] x=\left(A^{t} A\right)^{-1} A^{t} b} \\
x=\left(A^{t} A\right)^{-1} A^{t} b \\
=\operatorname{pinv}(A) b
\end{gathered}
$$

This value of x is called the least-squares Solution to the system of equations.
Result:-

$$
A x=b \quad x=\operatorname{pinv}(A) b
$$

System Least-squares solution

Let $A x=b$ be a system of n linear equations in m variables with n$\rangle \mathrm{m}$, where A is of rank m . This system has a least-squares solution. If the system has a unique solution, the least-squares solution is that unique solution. If the system is over determined, the least

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثير العربي 1.5 العدد 19

squares solution is the closest we can get to a true solution. The system cannot have many solutions.

Example (2):-
Find the least-squares solution of the following overdetermined system of equations and sketch the solution

$$
\begin{aligned}
& x+y=6 \\
& -x+y=3 \\
& 2 x+3 y=9
\end{aligned}
$$

Solution:-
The matrix of coefficients is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
-1 & 1 \\
2 & 3
\end{array}\right] \text { and } b=\left[\begin{array}{l}
6 \\
3 \\
9
\end{array}\right]
$$

The column vectors of A are linearly independent. Thus the rank of A is 2 .
This system has a least-squares solution.
We compute pinv (A).

$$
\begin{gathered}
A^{t}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 3
\end{array}\right] \\
A^{t} A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
-1 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
6 & 6 \\
6 & 11
\end{array}\right] \\
\left(A^{t} A\right)^{-1}=\frac{1}{\left|A^{t} A\right|} \operatorname{adj}\left(A^{t} A\right)=\frac{1}{30}\left[\begin{array}{cc}
11 & -6 \\
-6 & 6
\end{array}\right] \\
\operatorname{pinv}(A)=\left(A^{t} A\right)^{-1} A^{t}=\frac{1}{30}\left[\begin{array}{cc}
11 & -6 \\
-6 & 6
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 3
\end{array}\right] \\
=\frac{1}{30}\left[\begin{array}{ccc}
5 & -17 & 4 \\
0 & 12 & 6
\end{array}\right]
\end{gathered}
$$

| Journal of Educational |
| :---: | :---: | :---: |
| ISSN: 2011-421X |
| Arcif Q3 |

The least-squares solution is

$$
\operatorname{pinv}(A) b=\frac{1}{30}\left[\begin{array}{ccc}
5 & -17 & 4 \\
0 & 12 & 6
\end{array}\right]\left[\begin{array}{l}
6 \\
3 \\
9
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
3
\end{array}\right]
$$

The least-squares solution is the point $P\left(\frac{1}{2}, 3\right)$ in figure 1
Now we will see how Least-squares solutions can be used to find curves that best fit given data.

Figure 1

Least-squares Curves

Many branches of science and business use equations based on data that has been determined from experimental results.
In many applications, however, there is too much data to lead to an equation that exactly fits all data. One then uses the equation of a line or curve that in some sense "best" fits all the data. For example, suppose the data consists of the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, shown in figure 2 (a). These points lie approximately on a line. We would want the equation of the line that best fits these points. On the other hand, the points might closely fit a parabola, as shown in figure 2(b). We would then want to find the parabola that most closely fits these points.
Many criteria can be used for the best fit in such cases. The one that has generally been found to be most satisfactory is called the least-squares line or curve - found by solving an overdetermined system of equations. The least-squares line and curve is such that $d_{1}^{2}+\ldots+d_{n}^{2}$ in figure 2 is a minimum.
We want the best fit to discrete set of data points over a given interval.
We illustrate how to fit a least-squares polynomial to given data. The method involves constructing a system of linear equations. The least-squares solution to this system of equations gives the coefficients of the polynomial.

| Journal of Educational |
| :---: | :---: | :---: |
| ISSN: 2011-421X |
| Arcif Q3 |

(a)

(b)

Figure 2

Example (3):-
Find the least squares line for the following data points $(1,1),(2,2.4),(3,3.6)(4,4)$.
Solution:-
Let the equation of the line be $y=a_{1}+a_{a} x$ Substituting for these points into equation of the line, we get the overdetermined system.

$$
\begin{gathered}
a_{1}+a_{2}=1 \\
a_{1}+2 a_{2}=2.4 \\
a_{1}+3 a_{2}=3.6 \\
a_{1}+4 a_{2}=4
\end{gathered}
$$

We find the least squares solution.
The matrix of coefficients A and column vector d are as follows:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right] \text { and } d=\left[\begin{array}{l}
1 \\
2.4 \\
3.6 \\
4
\end{array}\right] \\
& \text { It can be shown that } \\
& \operatorname{pinv}(A)=\left(A^{\prime} A\right)^{-1} A^{t}=\frac{1}{20}\left[\begin{array}{cccc}
20 & 10 & 0 & -10 \\
-6 & -2 & 2 & 6
\end{array}\right]
\end{aligned}
$$

The least squares solution is

$$
\left[\left(A^{t} A\right)^{-1} A^{t}\right] d=\frac{1}{20}\left[\begin{array}{cccc}
20 & 10 & 0 & -10 \\
-6 & -2 & 2 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2.4 \\
3.6 \\
4
\end{array}\right]=\left[\begin{array}{l}
0.2 \\
1.02
\end{array}\right]
$$

$$
\text { thus } a_{1}=0.2 \quad a_{2}=1.02
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأتئر العربي 19

The equation of the least-squares line for this data is $\mathrm{y}=0.2+1.02 \mathrm{x}$
This is the line that is generally considered to be the line of best fit for these points. See Figure 3

Figure 3

Example (4):-
Find the least-squares parabola for the following data points

$$
(1,7),(2,2),(3,1),(4,3)
$$

Solution:-
Let the equation of the parabola be

$$
y=a_{1}+a_{2} x+a_{3} x^{2}
$$

Substituting for these points into the equation of the parabola, we get the system

$$
\begin{gathered}
a_{1}+a_{2}+a_{3}=7 \\
a_{1}+2 a_{2}+4 a_{3}=2 \\
a_{1}+3 a_{2}+9 a_{3}=1 \\
a_{1}+4 a_{2}+16 a_{3}=3
\end{gathered}
$$

We find the least-squares solution.
The matrix of coefficients A and column vector d are as follows

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right] \text { and } d=\left[\begin{array}{l}
7 \\
2 \\
1 \\
3
\end{array}\right]
$$

Then

$$
\operatorname{pinv}(A)=\left(A^{t} A\right)^{-1} A^{t}=\frac{1}{20}\left[\begin{array}{cccc}
45 & -15 & -25 & 15 \\
-31 & 23 & 27 & -19 \\
5 & -5 & -5 & 5
\end{array}\right]
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثئد العربي 19

The least-squares solution is

$$
\left[\left(A^{t} A\right)^{-1} A^{t}\right] d=\frac{1}{20}\left[\begin{array}{rrrr}
45 & -15 & -25 & 15 \\
-31 & 23 & 27 & -19 \\
5 & -5 & -5 & 5
\end{array}\right]\left[\begin{array}{l}
7 \\
2 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
15.25 \\
-10.05 \\
1.75
\end{array}\right]
$$

Then

$$
a_{1}=15.25 \quad a_{2}=10.05 \quad a_{3}=1.75
$$

The equation of the least-squares parabola for these data points is

$$
y=15.25-10.05 x+1.75 x^{2},
$$

as shown in figure 4

Figure 4
THEOREM 1: [11]
Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be a set of n data points. Let $y=a+a_{1} x+\ldots+a_{m} x^{m}$ be a polynomial of a degree $m(n\rangle m)$ that is to be fitted to these points. Substituting these points into the polynomial leads to a system $A x=b$ of n linear equations in the $\mathrm{m}+1$ variables a_{0}, \ldots, a_{m} where

$$
A=\left(\begin{array}{ccc}
1 & x_{1} \ldots & x_{1}^{m} \\
\vdots & \vdots & \vdots \\
1 & x_{n} \cdots & x_{n}^{m}
\end{array}\right) \quad \text { and } \quad b=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

The least-squares solution to this system gives the coefficients of the least-squares polynomial for these data points.

| Journal of Educational |
| :---: | :---: | :---: |
| ISSN: 2011-421X |
| Arcif Q3 |

Example (5):-
(Hooke's Law) states that when a force is applied to a spring, the length of the spring will be a linear function of the force. If L is the length of the spring when the force is F , this means that there exist (spring) constants a and b such that

$$
L=a_{1}+a_{2} F
$$

We shall now see that the spring constants, and hence the relationship between length of the spring L and force F can be found by using the method of least squares. Let various weights be suspended from the spring, and the length of the spring measured in each case.
Let the results be as following:-
Force, F (in ounces) $24 \quad 4 \quad 6 \quad 8$
$\begin{array}{llll}\text { Length, L (in inches) } 8.2 & 11.6 & 14.3 & 17.5\end{array}$
Write these statistics as points, where the first component is F and the second component is L. We get
$(2,8.2),(4,11.6),(6,14.3),(8,17.5)$
In theory, these points should all lie on a straight line.
The least - square line through these points will give the most satifactory equation for the line. We get the system:

$$
\begin{aligned}
a_{1}+2 a_{2} & =8.2 \\
a_{1}+4 a_{2} & =11.6 \\
a_{1}+6 a_{2} & =14.3 \\
a_{1}+8 a_{2} & =17.5
\end{aligned}
$$

The matrix of coefficient A and constant column matrix d are as follows.

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 2 \\
1 & 4 \\
1 & 6 \\
1 & 8
\end{array}\right] \quad \text { and } \quad \mathrm{d}=\left[\begin{array}{l}
8.2 \\
11.6 \\
14.3 \\
17.5
\end{array}\right]
$$

We get

$$
\operatorname{pinv}(A)=\left(A^{t} A\right)^{-1} A^{t}=\left[\begin{array}{lrlc}
1 & 0.5 & 0 & -0.05 \\
-0.15 & -0.05 & 0.05 & 0.15
\end{array}\right]
$$

The least - squares solution is:

$$
\left[\left(A^{t} A\right)^{-1} A^{t}\right] d=\left[\begin{array}{lrlc}
1 & 0.5 & 0 & -0.05 \\
-0.15 & -0.05 & 0.05 & 0.15
\end{array}\right]\left[\begin{array}{l}
8.2 \\
11.6 \\
14.3 \\
17.5
\end{array}\right]=\left[\begin{array}{l}
5.25 \\
1.53
\end{array}\right]
$$

Thus the spring constants are $a_{1}=5.25$ and $a_{2}=1.53$, the equation for the spring is $\mathrm{L}=5.25+1.53 \mathrm{~F}$.
Thus, for example, when a weight of 20 ounces is attached to the spring, we can expect the length of the spring to be approximately:
$5.25+(1.53 \times 20)$; that is 35.85 inches.
THEOREM 2 [11]
Let W be the subspace of R^{n} generated by linearly independent vectors $u_{1}, \ldots ., u_{m}$.
Let $A=\left[u_{1}, \ldots . . \mathrm{u}_{\mathrm{m}}\right]$. be the matrix where columns are the vectors $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}$. The projection of a vector y onto W is given by

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثُثدر العربي 19

$\operatorname{proj}_{w} y=A \quad \operatorname{pinv}(A) y$
$\mathrm{A} \operatorname{pinv}(\mathrm{A})$ is called a projection matrix

Example (6):-
Find the projection matrix for the plane $x-2 y-z=0$ in R^{3}.
Use this matrix to find the projection of the vector $(1,2,3)$ onto this plane.
Solution:
Let W be the subspace of vectors that lie in this plane. W consists of vectors of the form (x , y, z) where $\mathrm{x}=2 \mathrm{y}+\mathrm{z}$.
Thus $\mathrm{W}=\{(2 \mathrm{y}+\mathrm{z}, \mathrm{y}, \mathrm{z})\}$. We can write
$W=\{(y(2,1,0)+z(1,0,1)\}$.
Therefore, W is the space generated by the vectors $(2,1,0)$ and $(1,0,1$,$) . Let \mathrm{A}$ be the matrix having these vectors as columns.

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

It can be shown that:

$$
\operatorname{pinv}(A)=\frac{1}{6}\left[\begin{array}{rrr}
2 & 2 & -2 \\
1 & -2 & 5
\end{array}\right]
$$

The projection matrix is

$$
A \operatorname{pinv}(A)=\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & 1 \\
2 & 2 & -2 \\
1 & -2 & 5
\end{array}\right]
$$

The projection of $(1,2,3)$ onto W is computed by multiplying this vector, in column from, by A pinv (A) We get

$$
\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & 1 \\
2 & 2 & -2 \\
1 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]
$$

Thus the projection of $(1,2,3)$ onto plane $x-2 y-z=0$ is $(2,0,2)$.

References :-

[1]- Bretscher, O. "Linear Algebra with Applications" , Colby College, Pearson Education, Inc (2005 ${ }^{3 \mathrm{rd}}$).
[2]- Fixman, U and Frank , O. "Extensions of pairs of Linear transformations Between Infinite- Dimensional Vector spaces." Linear Algebra and App, Queen's University Canada, pp:275-291 vol:19 (1978).
[3]- Friedberg, S, H, Arnold, J , I and Lawrence, E, S, "Linear Algebra" ; Illinois State University, Pearson Education, Inc (2003 $\left.{ }^{4 \text { th }}\right)$.

	مجــلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنّير العربي 19

[4]- Jagannadham. P. V "linear Transformations in a Boolean Vector Space", Math. Annalen pp:240-247vol-167(1966).
[5]- Karepa, S. "Semidgroups of Linear Transformations in n-Dimensional vector Space", Glasnik- MAT-FIZ- ASTR Drustvo- MAT FIX pp:3-32 vol:13 (1958) Zagreb.
[6]- Kreyszig, E, "Introductory functional Analysis with applications" New work :John Wiley and Son. Inc. (1978)
[7]- Morris, A, O. "Linear algebra An introduction" Vnr New Mathematics Library 9. (1982 ${ }^{\text {2th }}$) .
[8]- Poole, D. "Linear algebra A modern Introduction" Thomson Learning, Inc (2003).
[9]- Rotman, J, J. "A First Course In Abstract Algebra with Applications" New Jersey : Pearson Education, Inc. ($\left.2006^{3 \text { th }}\right)$.
[10]- Tropper, A, M. "Linear Algebra" Nelson, Inc. (1969).
[11]- Williams, G. "Linear algebra with Applications". Jones and Bartlett Publishers, Inc $\left(2005^{5 \mathrm{th}}\right)$

	Journal of Educational ISSN: 2011-421X Arcif Q3	1.5

الصفحة	اسم الباحث	عنوان البحث	-.ر
1-23	يونس يوسف أبوناجي	وضع الضاهر موضع الضمير ودلالته على المنى عند	1
24-51	محمد خليفة صالح خليفة محمود الجداوي	در اسة استغصائية حول مساهمة تنتية المعلومات والإتصالات في نشر تقافة الشفافية ومحاربة الفساد	2
52-70	Ebtisam Ali Haribash	An Interactive GUESS Method for Solving Nonlinear Constrained Multi-Objective Optimization Problem	3
71-105	احمد علي الهادي الحويج احمد محمد سليم معو ال	العو امل الخمسة الكبرى للثخصية وعلاقتها بالذكاء الوجداني لاى طلبة مرحلة التعليم الثانوي	4
106-135	محمد عبد السلام دخل	في المجتمع الليبي التحضر و انعكاساته على الحياة الاجتماعية "در اسة ميدانية في مدينة الخُمس"	5
136-158	سالم فرج زوبيك	الاستعارة التهكمية في القرآن الكريم	6
159-173	أسماء جمعة القلعى	دور الرياضات العطلية الصوفية في تهزبب السلوك	7
174-183	S. M. Amsheri N. A. Abouthfeerah	On Coefficient Bounds for Certain Classes of Analytic Functions	8
184-191	N. S.Abdanabi	Fibrewise Separation axioms in Fibrewise Topological Group	9
192-211	Samah Taleb Mohammed	Investigating Writing Errors Made by Third Year Students at the Faculty of Education El-Mergib University	10
212-221	Omar Ali Aleyan Eissa Husen Muftah AL remali	SOLVE NONLINEAR HEAT EQUATION BY ADOMIAN DECOMPOSITION METHOD [ADM]	11
222-233	حسن احمد قرقد عبدالباسط محمد قريصة مصطفى الطويل	فياس تركيز بعض العناصر الثقلة في المياه الجوفية لمدينة مصر اته	12
234-244	ربيعة عبد اله الثبير عائشة أحمد عامــر عبير مصطفى الهصيك	تعامد الدوال الكروية المناظرة لقيم ذاتية على سطح الكرة	13
245-255	Khadiga Ali Arwini Entisar Othman Laghah	λ-Generalizations And \mathbf{g} - Generalizations	14

	مجــلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثير العربي 19 العدي

256-284	خيري عبدالسلام حسين كليب عبدالسلام بشير اشتيوي بشير ناصر مختار كصارة	Impact of Information Technology on Supply Chain management	15
285-294	Salem H. Almadhun, Salem M. Aldeep, Aimen M. Rmis, Khairia Abdulsalam Amer	Examination of 4G (LTE) Wireless Network	16
295-317	نور الدين سالم	التجربة الجمالية لاى موريس ميرلوبوتي	17
318-326	ليلى منصور عطية الغويج هدى على التقبي	Effect cinnamon plant on liver of rats treated with trichloroethylene	18
327-338	Fuzi Mohamed Fartas Naser Ramdan Amaizah Ramdan Ali Aldomani Husamaldin Abdualmawla Gahit	Qualitative Analysis of Aliphatic Organic Compounds in Atmospheric Particulates and their Possible Sources using Gas Chromatography Mass Spectrometry	19
339-346	E. G. Sabra A. H. EL- Rifae	Parametric Tension on the Differential Equation	20
347-353	Amna Mohamed Abdelgader Ahmed	Totally Semi-open Functions in Topological Spaces	21
354-376	زينب إمحمد أبوراس حواء بشير بالنور	كتاب الخصائص لابن جني دراسة بعض مو اضع الحذف من ت"392" المسمى: باب في شجاعة العربية	22
377-386	لطفية محمد الدالي	Least-Squares Line	23
387-397	نادية محمد الدالي ايمان احمد اخميرة	THEORETICAL RESEARCH ON AI TECHNOLOGIES FOR LEARNING SYSEM	24
398-409	Ibrahim A. Saleh Tarek M. Fayez Mustafah M. A. Ahmad	Influence of annealing and Hydrogen content on structural and optoelectronic properties of Nanomultilayers of a-Si:H/a-Ge: H used in Solar Cells	25
410-421	أسماء محمد الحبشي	The learners' preferences of oral corrective feedback techniques	26
422-459	آمنة محمد العكاثي ربيعة عثمان عبد الجليل عفاف محمد بالحاج فتحية علي جعفر	التقاير الإيجابي المسبق لفاعلية الذات ودوره في التغلب علي مصادر الضغوط النفسية " در اسة تحليلية "	27

	مجــلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثير العربي 19 العدي

460-481	Aisha Mohammed Ageal Najat Mohammed Jaber	English Pronunciation problems Encountered by Libyan University Students at Faculty of Education, Elmergib University	28
482-499	الحسين سليم	The Morphological Analysis of the Quranic Texts	29
500-507	Ghada Al-Hussayn Mohsen	Cultural Content in Foreign Language Learning and Teaching	30
508-523	HASSAN M. ALI Mostafa M Ali	The relationship between slyA DNA binding transcriptional activator gene and Escherichia coli fimbriae and related with biofilm formation	31
524-533	Musbah A. M. F. Abduljalil	Molecular fossil characteristics of crude oils from Libyan oilfields in the Zalla Trough	32
534-542	سعدون شهوب محمد	تلوث المياه الجوفية بالنترات بمنطقة كعام، شمال غرب ليبيا	33
543-552	Naima M. Alshrif Mahmoud M. Buazzi	Analysis of Genetic Diversity of Escherichia Coli Isolates Using RAPD PCR Technique	34
553-560	Hisham mohammed alnaib alshareef aisha mohammed elfagaeh aisha omran alghawash abdualaziz ibrahim lawej safa albashir hussain kaka	The Emergence of Virtual Learning in Libya during Coronavirus Pandemic	35
561-574	Abdualaziz Ibrahim Lawej Rabea Mansur Milad Mohamed Abduljalil Aghnayah Hamza Aabeed Khalafllaa ${ }^{3}$	ATTITUDES OF TEACHERS AND STUDENTS TOWARDS USING MOTHER TONGUE IN EFL CLASSROOMS IN SIRTE	36
575-592	صالحة النومي الاروقي أمال محمد سالم أبوسته	دافع الانجاز وعلاقته بالرضا الوظيفي لدى معلمي مرحلة التعليم الأساسي "ببلدية ترهونة"	37
593-609	آدنة سالم عبد القادر قدورة نجية علي جبريل انبية	الإرشاد النفسي ودوره في مو اجهة بعض المشكلات الأسرية الراهنة	38
610-629	Hanan B. Abousittash, Z. M. H. Kheiralla Betiha M.A.	Effect Mesoporous silica silver nanoparticles on antibacterial agent Gram- negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus	39
630-652	حنان عمر بشبر الرمالي	برنامج التربية العطلية وتطويره	40
653-672	Abdualla Mohamed Dhaw	Towards Teaching CAT tools in Libyan Universities	41

	مجـلة الـتـربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 19

673-700	عثمان علي أميمن سليمـــة رمضــــان الكوت زهــرة عثمان البــرق	سبل إعادة أعمار وتأهيل سكان المدن المدمرة بالحرب ومعوقات المصالحة الوطنية في المجتمع الليبي: مقاربة نفس-اجتماعية	42
701-711	Abdulrhman Mohamed Egnebr	Comparison of Different Indicators for Groundwater Contamination by Seawater Intrusion on the Khoms city, Libya	43
712-734	Elhadi A. A. Maree Abdualah Ibrahim Sultan Khaled A. Alurrfi	Hilbert Space and Applications	44
735-759	معتوق علي عون عمار محمد الزليطني عرفات المهـي قرينات	المو ارد الطبيعية اللازمة لتحقيق التتمية الاقتصادية بشمال غرب ليبيا وسبل تحقيق الاستتامة	45
760-787	سهام رجب العطوي هدى المبروك موسى	الخجل و علاقته بمفهوم الذات لدى تلاميذ الشق الثاني بمرحلة التعليم الاساسي بمنطقة جنزور	46
788-820	هنية عبدالسلام البالوص زهرة المهـي أبو راس	الصلابة النفسية ودور ها الوفائي في مو اجهة الضغوط النفسية	47
821-847	عبد الحميد مفتاح أبو النور محي الدين علي المبروك	ودوره في الحد من التنتر التوجيه التنربوي والإرشاد النفسي اللدرسي	48
848		(الفهرس	52

