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AX=b   n>m  m &n 

 
 

Introduction: 

 

   We derive the method of finding a polynomial that best fits given data points a method 

that is extremely important to the natural sciences , social sciences , and engineering . 

Let x be the vector of variables and b be the vector of constants.   

We have seen that a system Ax b  of n equations in   n   variables, where   A    is 

invertible, has the unique solution 
1x A b  . 

However , if Ax b  is a system of  n  equations in  m  variables , where  n   m  , the 

system does not , in general , have a solution and it is then said to be overdetermined . 

A is not a square matrix for such a system, and 
1A 

 does not exist. We will introduce a 

matrix called the pseudoinverse of A, denoted pinv (A), that leads to a least-squares 

solution x = pinv (A) b for an overdetermined system. This is not a true solution, but it is in 

some sense the closest we can get to a true solution for the system. We will see an 

application of overdetermined in finding curves that "best" fit data. 

 

Definition [3] 

Let A  Mm×n  . We define the adjoint of A to be the n×m matrix adj(A) or A
*
 such that 

(A
*
)ij= Aji for all i, j . 

 

Definition [3] 

The transpose A
t
 of an  n×m matrix A is the n×m obtained from A by interchanging the 

rows with the columns; that is (A
t
)ij= Aji 

 

Definition :[11]  

Let A be a matrix. The matrix   (A
t
 A)

-1 
A

t   
is called the pseudoinverse of A, and is denoted 

pinv (A). 

We have seen that not every matrix has an inverse. Similarly, not every matrix has a 

pseudoinverse. The matrix A has pseudoinverse if (A
t
 A)

-1 
exists. 

Example (1):- 
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Find the pseudoinverse of A =

1 2

1 3

2 4

 
 

 
  

 

Solution: 

We compute the pseudoinverse of A in stages 

A
t
 A = 

1 2
1 1 2 6 7

1 3
2 3 4 7 29

2 4

 
    

     
   

  

 

(A
t
 A )

-1 
= 

t

t

29 71 1
adj(A  A )=

7 6125A  A  

 
 
 

 

pinv (A) = (A
t
 A)

-1
 A

t
 = 

29 7 1 1 21

7 6 2 3 4125

    
   
   

 

3 10 61

1 5 225

 
  

 
 

Now we will use the concept of pseudoinverse to further our understanding of systems of 

linear equations. 

Let Ax b  be a system of n linear equation in m variables with   

n   m , where  A is of rank  m  . Multiply each side of this matrix equation by A
t
, to get:- 

t tA Ax A b normal equation 

such that tA A  is symmetric matrix and Least – Squares solution x satisfies : 

( ) 0tA b Ax   

 

The matrix tA A  can be shown to be invertible for such system. 

Multiply each side of this equation by  1( )tA A   and solve for x to get  
1 1( ) ( ) ( )t t t tA A A Ax A A A b   
1 1[( ) ( )] ( )t t t tA A A A x A A A b   

 
1( )

( )

t tx A A A b

pinv A b




 

This value of x is called the least-squares Solution to the system of equations. 

Result:- 

( )Ax b x pinv A b   

System  Least-squares solution 

 

Let Ax b be a system of n linear equations in m variables with n  m, where A is of 

rank m. This system has a least-squares solution. If the system has a unique solution, the 

least-squares solution is that unique solution. If the system is over determined, the least 
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squares solution is the closest we can get to a true solution. The system cannot have many 

solutions.  

 

 

Example (2):- 

Find the least-squares solution of the following overdetermined system of equations and 

sketch the solution  

6

3

2 3 9

x y

x y

x y

 

  

 
 

 

Solution:- 

The matrix of coefficients is 

1 1 6

1 1 3

2 3 9

A and b

   
   

  
   
      

 

The column vectors of A are linearly independent. Thus the rank of A is 2.  

This system has a least-squares solution. 

We compute pinv (A). 

1 1 2

1 1 3

tA
 

  
 

 

1 1
1 1 2 6 6

1 1
1 1 3 6 11

2 3

tA A

 
    

      
   

  

 

1

1

11 61 1
( ) ( )

6 630

11 6 1 1 21
( ) ( )

6 6 1 1 330

5 17 41

0 12 630

t t

t

t t

A A adj A A
A A

pinv A A A A





 
   

 

    
     

   

 
  

 
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The least-squares solution is  

1

6 2
5 17 41

( ) 3
0 12 630

9 3

pinv A b

 
  

     
      

       
 

 

The least-squares solution is the point 
1

( ,3)
2

P  in figure 1 

Now we will see how Least-squares solutions can be used to find curves that best fit given 

data. 

 

 

 

                   

 

 

                                          

 

 

Figure 1 

 

Least-squares Curves  

        Many branches of science and business use equations based on data that has been 

determined from experimental results. 

In many applications, however, there is too much data to lead to an equation that exactly 

fits all data. One then uses the equation of a line or curve that in some sense "best" fits all 

the data. For example, suppose the data consists of the points 1 1( , ), , ( , )n nx y x y , 

shown in figure 2 (a). These points lie approximately on a line. We would want the 

equation of the line that best fits these points. On the other hand, the points might closely fit 

a parabola, as shown in figure 2(b). We would then want to find the parabola that most 

closely fits these points. 

Many criteria can be used for the best fit in such cases. The one that has generally been 

found to be most satisfactory is called the least-squares line or curve – found by solving an 

overdetermined system of equations. The least-squares line and curve is such that 
2 2

1 nd d   in figure 2 is a minimum. 

We want the best fit to discrete set of data points over a given interval. 

            We illustrate how to fit a least-squares polynomial to given data. The method 

involves constructing a system of linear equations. The least-squares solution to this system 

of equations gives the coefficients of the polynomial. 
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Figure 2 

 

 

Example (3):- 

Find the least squares line for the following data points (1,1),(2,2.4),(3,3.6)(4,4) . 

Solution:- 

Let the equation of the line be           Substituting for these points into equation of 

the line, we get the overdetermined system. 

        

           

           

         
 

We find the least squares solution. 

The matrix of coefficients A and column vector d are as follows: 

1 1 1

1 2 2.4

1 3 3.6

1 4 4

A and d

   
   
    
   
   
   

 

It can be shown that 

' 1
20 10 0 101

( ) ( )
6 2 2 620

tpinv A A A A
 

   
  

 

The least squares solution is 

1

1

20 10 0 10 2.4 0.21
( )

6 2 2 6 3.6 1.0220

4

t tA A A d

 
 

                 
 
 
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      The equation of the least-squares line for this data is  

y = 0.2 +1.02x 

This is the line that is generally considered to be the line of best fit for these points. See 

Figure 3 

 

 

 
 

Figure 3 

 

Example (4):- 

Find the least-squares parabola for the following data  points  

                          (1, 7),(2, 2),(3, 1),(4, 3) 

Solution:- 

Let the equation of the parabola be  

            
  

                         

Substituting for these points into the equation of the parabola, we get the system  

           

             

             

              
                     

We find the least-squares solution. 

The matrix of coefficients A and column vector d are as follows  

1

1 1 1 7

1 2 4 2

1 3 9 1

1 4 16 3

45 15 25 15
1

( ) ( ) 31 23 27 19
20

5 5 5 5

t t

A and d

Then

pinv A A A A

   
   
    
   
   
   

  
 

   
 
   
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The least-squares solution is  

1

7
45 15 25 15 15.25

21
( ) 31 23 27 19 10.05

120
5 5 5 5 1.75

3

t tA A A d

 
     

                
         

 

 

Then  

                                    
          

The equation of the least-squares parabola for these data points is  
215.25 10.05 1.75y x x   , 

as shown in figure 4 

 

 
Figure 4 

THEOREM 1:   [11] 

Let 1 1( , ), , ( , )n nx y x y be a set of n data points. Let 1

m

my a a x a x     be 

a polynomial of a degree ( )m n m  that is to be fitted to these points. Substituting these 

points into the polynomial leads to a system Ax b of n linear equations in the m+1 

variables  0 , , ma a   where 

                   

11 11

1

m

m

n n n

yx x

A and b

x x y

   
   

    
     

  

The least-squares solution to this system gives the coefficients of the least-squares 

polynomial for these data points. 
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Example (5):- 

(Hooke's Law) states that when a force is applied to a spring, the length of the spring will 

be a linear function of the force. If L is the length of the spring when the force is F, this 

means that there exist (spring) constants a and b such that  

         
We shall now see that the spring constants, and hence the relationship between length of 

the spring L and force F can be found  by using the method of least squares . Let various 

weights be suspended from the spring, and the length of the spring measured in each case. 

Let the results be as following:- 

Force, F (in ounces)    2       4         6         8 

Length, L (in inches) 8.2    11.6     14.3    17.5 

Write these statistics as points, where the first component is F and the second component is 

L. We get  

 ( 2 , 8.2) , ( 4 , 11.6) , ( 6 , 14.3 ) , ( 8 , 17. 5)  

In theory, these points should all lie on a straight line. 

The least – square line through these points will give the most satifactory equation for the 

line. We get the system: 

              

            

            

            
The matrix of coefficient A and constant column matrix d are as follows. 

1 2

1 4
A

1 6

1 8

 
 
 
 
 
 

        and         

8.2

11.6
d

14.3

17.5

 
 
 
 
 
 

 

We get 

pinv ( A) = ( A
t
 A)

-1 
A

t 
= 

1 0.5 0 0.05

0.15 0.05 0.05 0.15

 
 
  

 

The least – squares  solution is: 

 

1

8.2

1 0.5 0 0.05 11.6 5.25
( )

0.15 0.05 0.05 0.15 14.3 1.53

17.5

t tA A A d

 
 

                 
 
 

 

Thus the spring constants are       = 5.25   and     = 1.53, the equation for the spring is  

 L = 5.25 + 1.53 F. 

Thus, for example, when a weight of 20 ounces is attached to the    spring, we can expect 

the length of the spring to be approximately:              5.25 + (1.53 x 20); that is 35.85 

inches. 

THEOREM 2   [11] 

Let W be the subspace of R
n
 generated by linearly independent vectors u1,…..,um . 

Let A=[u1,…..um] . be the matrix where columns are the vectors            u1, u2,…,um. The 

projection of a vector y onto W is given by  
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( )wproj y A pinv A y  

A pinv(A) is called a projection matrix . 

 

Example (6):- 

Find the projection matrix for the plane   x – 2 y –z = 0    in   R
3
. 

Use this matrix to find the projection of the vector (1 , 2 , 3 )  onto this plane. 

Solution:  

Let W be the subspace of vectors that lie in this plane. W consists of vectors of the form (x, 

y, z) where x = 2y + z.  

Thus W = {( 2y + z , y  , z )}. We can write 

 W= {(y(2,1,0)+z(1,0,1)}. 

Therefore, W is the space generated by the vectors (2, 1, 0) and (1,0,1,) . Let A be the 

matrix having these vectors as columns. 

2 1

A 1 0

0 1

 
 


 
  

 

It can be shown that: 

pinv ( A) = 
2 2 21

1 2 56

 
 

 
 

 

 

 

The projection matrix is  

A pinv (A) = 

5 2 1
1

2 2 2
6

1 2 5

 
 


 
  

 

The projection of  ( 1 , 2 , 3 ) onto W is computed by multiplying this vector, in column 

from, by A pinv ( A)  We get  

5 2 1 1 2
1

2 2 2 2 0
6

1 2 5 3 2

     
     

 
     
          

 

Thus the projection of (1, 2, 3) onto plane x -2y – z = 0 

 is ( 2 ,0 , 2 ) . 
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