

חجلة التربوكا مجلة علمية مרكمة تصار عنَكليةالتربية جامعة المرقبا

العدد العشرون
يناير 2022م

هيئـــة تحريـر
 هجلة التربوي

$$
\begin{aligned}
& \text { - المجلة ترحب بما يرد عليها من أبحاث وعلى استعداد لنشر ها بعد التحكيم . } \\
& \text { • المجلة تحترم كل الاحترام آراء المحكمين وتعمل بمقتضاها } \\
& \text { • • كافة الآراء والأفكار المنشورة تعبر عن آراء أصحابها ولا تتحمل المجلة تبعاتها الاتها } \\
& \text { - } \\
& \text { • الثجوث المقدمة لللشر لا ترد لأصحابها نشرت أو لم تنشر } \\
& \text { (حقوق الطبع محفوظة للكلية) }
\end{aligned}
$$

يشترط في البحوث العلمية المقدمة للنشر أن ير اعى فيها ما يأتي : . أصول البحث العلمي وقواعده - ألا تكون المادة العلمية قد سبق نشر ها أو كانت جزء الـو من رسالة علمية . .

- تتعدل البحوث المقبولة وتصحح وفق ما ير اه المحكمون .
- التزام الباحث بالضوابط التي وضعتها المجلة من عدد الصفحات ، ونوع الخط ورقمه ، والفترات الزمنية الممنوحة للتعديل ، وما يستجد من ضوابط تضعها المجلة مستقبلا . تنبيهات :
- للمجلة الحق في تعديل البحث أو طلب تعديله أو رفضه . - يخضع البحث في النشر لأولويات المجلة وسياستها . - البحوث المنشورة تعبر عن وجهة نظر أصحابها ، ولا تعبر عن وجهة نظر المجلة .

Information for authors

1- Authors of the articles being accepted are required to respect the regulations and the rules of the scientific research.
2- The research articles or manuscripts should be original and have not been published previously. Materials that are currently being considered by another journal or is a part of scientific dissertation are requested not to be submitted.
3- The research articles should be approved by a linguistic reviewer.
4- All research articles in the journal undergo rigorous peer review based on initial editor screening.
5- All authors are requested to follow the regulations of publication in the template paper prepared by the editorial board of the journal.

Attention

1- The editor reserves the right to make any necessary changes in the papers, or request the author to do so, or reject the paper submitted.
2 - The research articles undergo to the policy of the editorial board regarding the priority of publication.
3- The published articles represent only the authors' viewpoints.

Conjugate Newton's Method for a Polynomial of degree m+1

Omar Ismail Elhasadi ${ }^{1}$, Mohammed Saleh Alsayd ${ }^{2}$ and Elhadi A. A. Maree ${ }^{3}$
Department of Mathematics, School of basic Sciences, The Libyan Academy for Graduate Studies, Tripoli ${ }^{1,2}$
Department of Mathematics, Faculty of Science, Elmergib University ${ }^{3}$
omar.ismail@academy.edu.ly ${ }^{1}$

0.1 Abstract

The main problem of this paper is to conjugate the cubic equation to quadratic equation by using Möbius transformation, so the work to finding the roots of polynomials with Complex variable and double roots using Newton's method will be easier. Also we make some correction to the linear fractional transformation (or Mobius transformation) which mentioned in [12].

0.2 Introduction

In this paper is devoted to investigate the using of the complex dynamic Newton's Method for a double Root. We discuss different cases including: simple root and multiple roots. To approximating the real or complex roots of a polynomial function $g(z)$, Newton's Method which consists of iterating the function $N(z)$ is needed where;

$$
\begin{equation*}
N(z)=z-\frac{g(z)}{g^{\prime}(z)} . \tag{0.2.1}
\end{equation*}
$$

If we chose the, initial value for z_{0} to be sufficiently close to a root of g, the sequence of iterations, $z_{k+1}=N\left(z_{k}\right)$ will converge to the root. The type of convergence depends on the complexity of the root, if the root is simple, the sequence converges quadratically, but if the root is a multiple, the convergence can be only linear. Newton's method can be adjusted to have a better convergence to multiple roots. If the function $g(z)$ has a multiple root of order exactly m, the applying Newton's method to $\sqrt[m]{g(z)}$ leads to

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

$$
\begin{gathered}
N_{m}(z)=z-\frac{\sqrt[m]{g(z)}}{(\sqrt[m]{g(z)})^{\prime}}, \\
N_{m}(z)=z-\frac{(g(z))^{\frac{1}{m}}}{\frac{1}{m} g(z)^{\frac{1}{m}-1} g^{\prime}(z)}, \\
=\frac{\left[(g(z))^{\frac{1}{m}-1} \cdot g^{\prime}(z)\right] z-m(g(z))^{\frac{1}{m}}}{g(z)^{\frac{1}{m}-1} \cdot g^{\prime}(z)},
\end{gathered}
$$

we get;

$$
\begin{gather*}
N_{m}(z)=\frac{(g(z))^{\frac{1}{m}-1}\left[g^{\prime}(z) z-m g(z)\right]}{(g(z))^{\frac{1}{m}-1} \cdot g^{\prime}(z)}, \\
N_{m}(z)=\frac{g^{\prime}(z) z-m g(z)}{g^{\prime}(z)}=z-\frac{m g(z)}{g^{\prime}(z)}, \tag{0.2.2}
\end{gather*}
$$

This method is called relaxed Newton's method or Newton's method for a root of order m. This method converge quadratically to a root of order m.

Newton's method defines a dynamical system on the complex Riemann sphere for each polynomial function $g(z)$. Peitgen and Haeseler provide with an overview of the complex dynamics of Newton's method for a rational function, and discuss the basins of attraction of the roots for the relaxed Newton's method. We introduced how the relaxed Newton's method for a double root is applied to a cubic with a double root, and illustrate that the dynamics is conjugate to that of a wellknown Julia set. Applying the relaxed Newton's method for a root of order m. to a polynomial of degree $m+1$. Came up with a similar result. Also, it is shown that the Julia sets came by Bums, Palmore and Benzinger applying the standard Newton's method to the family of functions $(z-1)(z+\alpha)^{k}$ are conjugate to the Julia sets of quadratics.

	مجـلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنثر العربي 20

0.3 Conjugate the Map N by Transformation to obtain a Quadratic Polynomial

Theorem 1.

For the rational map $N_{p}(z)$ arising from Newton's method applied to a quadratic polynomial $p(z)=(z-a)(z-b), a \neq b, N_{p}(z)$ is conjugate to z^{2} by the Möbius transformation.

Proof:

By substitution in Eq. (0.2.1) we obtaining

$$
\begin{align*}
& N(z)=z-\frac{(z-a)(z-b)}{(z-a)+(z-b)}, \\
& =\frac{z[(z-a)+(z-b)]-(z-a)(z-b)}{(z-a)+(z-b)}, \\
= & \frac{z^{2}-a z+z^{2}-b z-z^{2}+b z+a z-a b}{2 z-a-b}, \\
N(z) & =\frac{z^{2}-a b}{2 z-a-b}, \tag{0.3.1}
\end{align*}
$$

by derivative Eq. (0.3.1) we get

$$
\begin{aligned}
N^{\prime}(z)= & \frac{(2 z-a-b) \cdot 2 z-\left(z^{2}-a b\right) \cdot 2}{(2 z-a-b)^{2}}, \\
& =\frac{4 z^{2}-2 a z-2 b z-2 z^{2}+2 a b}{(2 z-a-b)^{2}}, \\
& =\frac{2 z^{2}-2 a z-2 b z+2 a b}{(2 z-a-b)^{2}}, \\
N^{\prime}(z) & =\frac{2\left(z^{2}-a z-b z+a b\right)}{(2 z-a-b)^{2}},
\end{aligned}
$$

The fixed point of N are $z=a$ and $z=b$, since $N^{\prime}(a)=N^{\prime}(b)=0$ then a and b are a super attractive fixed points.

معامل التأثير العربي 20		
20	Journal of Educational ISSN: 2011-421X Arcif Q3	1.5

The critical point of N are $z=a$ and $z=b$.
The critical points of the quadratic $p(z)=z^{2}+c$ on the Riemann sphere are $z=0$ and $z=\infty$ is also a super attractive fixed point.
the linear fractional transformation (or Möbius transformation). Using the transformation

$$
\begin{equation*}
h(z)=\frac{z-p}{z-q}, \tag{0.3.2}
\end{equation*}
$$

Where p is turns to zero and q is turns to ∞.
Now we have $h(z)=\frac{z-a}{z-b}$,
to find $h^{-1}(z)$, assume that

$$
\begin{gathered}
h^{-1}(z)=w \rightarrow z=h(w), \\
z=\frac{w-a}{w-b} \\
\Rightarrow \quad(w-b) z=(w-a) \\
\Rightarrow \quad w z-b z=w-a \\
w z-w=b z-a \\
w(z-1)=b z-a \\
w=\frac{(b z-a)}{z-1} \Rightarrow h^{-1}(z)=\frac{b z-a}{z-1},
\end{gathered}
$$

Conjugate the map N, by transformation h, to obtain the quadratic;
Let;

$$
p(z)=h \circ N \circ h^{-1}(z),
$$

$$
\begin{gathered}
N \circ h^{-1}(z)=\frac{z^{2}-a b}{2 z-a-b} \circ \frac{b z-a}{z-1}=\frac{\left(\frac{b z-a}{z-1}\right)^{2}-a b}{2\left(\frac{b z-a}{z-1}\right)-a-b}, \\
=\frac{\left[(b z-a)^{2}-a b(z-1)^{2}\right]}{\left[2(b z-a)(z-1)-(a+b)(z-1)^{2}\right]},
\end{gathered}
$$

	مجـلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

$$
\begin{gathered}
=\frac{\left[b^{2} z^{2}-2 a b z+a^{2}-a b z^{2}+2 a b z-a b\right]}{\left[2 b z^{2}-2 b z-2 a z+2 a-a z^{2}+2 a z-a-b z^{2}+2 b z-b\right]} \\
=\frac{b^{2} z^{2}+a^{2}-a b z^{2}-a b}{b z^{2}+a-a z^{2}-b} \\
=\frac{\left(b z^{2}-a\right)[b-a]}{\left(z^{2}-1\right)[b-a]}=\frac{b z^{2}-a}{z^{2}-1}
\end{gathered}
$$

therefore

$$
\begin{aligned}
& h \circ N \circ h^{-1}(z)=\frac{z-a}{z-1} \circ \frac{b z^{2}-a}{z^{2}-1} \\
& \Rightarrow \frac{\frac{b z^{2}-a}{z^{2}-1}-a}{\frac{b z^{2}-a}{z^{2}-1}-b}=\frac{b z^{2}-a-a\left(z^{2}-1\right)}{b z^{2}-a-b\left(z^{2}-1\right)} \\
& =\frac{b z^{2}-a-a z^{2}+a}{b z^{2}-a-b z^{2}+b}=\frac{z^{2}(b-a)}{b-a}=z^{2}
\end{aligned}
$$

Theorem 2.

The relaxed Newton's method N_{2} for a double root applied to any cubic equation with a double root is conjugate by a linear fractional transformation on the Riemann sphere to the iterations of the quadratic

$$
p(z)=\frac{3 z^{2}-1}{2}
$$

Proof:

Assume that cubic be $g(z)=(z-a)^{2}(z-b)$, where a and b are distinct complex numbers. By applying the Newton's method for a double root to a this cubic, we obtain the following;

$$
\begin{aligned}
& N_{2}(z)=z-\frac{2 g(z)}{g^{\prime}(z)}, \\
& \quad N_{2}(z)=z-\frac{2\left[(z-a)^{2}(z-b)\right]}{\left[(z-a)^{2}(z-b)\right]^{\prime}},
\end{aligned}
$$

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

$$
\begin{align*}
& \quad=z-\frac{2[(z-a)(z-a)(z-b)]}{\left[(z-a)^{2} \cdot 1+(z-b) \cdot 2(z-a) \cdot 1\right]}, \\
& \quad=z-\frac{(z-a)[3(z-a)(z-b)]}{(z-a)[(z-a)+2(z-b)]}, \\
& \quad=z-\frac{2[(z-a)(z-b)]}{[(z-a)+2(z-b)]}, \\
& =\frac{z^{2}-a z+2 z^{2}-2 b z-2 z^{2}+2 b z+2 a z-2 a b}{z-a+2 z-2 b}, \\
& N_{2}(z)=\frac{z^{2}+a z-2 a b}{3 z-a-2 b}, \tag{0.3.3}
\end{align*}
$$

by derivative Eq. (0.3.3) we obtaining

$$
\begin{gather*}
N_{2}^{\prime}(z)=\frac{(3 z-a-2 b)[2 z+a]-\left[\left(z^{2}+a z-2 a b\right) .3\right]}{(3 z-a-2 b)^{2}} \\
=\frac{6 z^{2}+3 a z-2 a z-a^{2}-4 b z-2 a b-3 z^{2}-3 a z+6 a b}{(3 z-a-2 b)^{2}} \\
=\frac{3 z^{2}-2 a z-a^{2}-4 b z+4 a b}{(3 z-a-2 b)^{2}} \\
N_{2}^{\prime}(z)=\frac{(z-a)[3 z+a-4 b]}{(3 z-a-2 b)^{2}} \tag{0.3.4}
\end{gather*}
$$

It is clear that N_{2} has fixed points of $z=a$ and $z=b$. when $z=a$ the derivative $N_{2}^{\prime}(a)=0, \mathrm{So}, a$ is a super attractive fixed point, and when
$z=b$ the $N_{2}^{\prime}(b)=-1$, then,b is a neutral fixed point.
The critical points of $N_{2}^{\prime}(z)=0$,
To find critical points, we put $N_{2}^{\prime}(z)=0$ in Eq. (0.3.4)

$$
\begin{gathered}
\frac{(z-a)(3 z+a-4 b)}{(3 z-a-2 b)^{2}}=0 \rightarrow(z-a)(3 z+a-4 b)=0 \\
z-a=0, \Rightarrow z=a
\end{gathered}
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأتئير العربي 20

$$
\begin{array}{r}
\text { or } 3 z+a-4 b=0 \\
3 z=4 b-a, \quad \Rightarrow z=\frac{4 b-a}{3}
\end{array}
$$

The critical points of the quadratic $p(z)=z^{2}+c$ on the Riemann sphere;

$$
p^{\prime}(z)=2 z,
$$

To find critical point we put $p^{\prime}(z)=0$;

$$
2 z=0 \Rightarrow z=0, \quad \text { or } z=\infty,
$$

Since $z=\infty$ is a super attractive fixed point too.
Mobius transformation on the linear fractional transformation, by using transformation in Eq. (0.3.2)
where p is to be transform to zero, and q is to be transform to ∞,

$$
\begin{aligned}
& h(z)=\frac{z-\left(\frac{4 b-a}{3}\right)}{z-a}, \\
= & \frac{3 z-4 b+a}{3 z-3 a}, \\
& h(z)=\frac{3 z-4 b+a}{3(z-a)} .
\end{aligned}
$$

to find $h^{-1}(z)$, we suppose that;

$$
\begin{gathered}
h^{-1}(z)=w \rightarrow z=h(w), \\
z=\frac{3 w+a-4 b}{3(w-a)}, \\
3 z(w-a)=3 w+a-4 b, \\
3 z w-3 z a=3 w+a-4 b, \\
3 z w-3 w=3 a z+a-4 b, \\
w(3 z-3)=3 a z+a-4 b,
\end{gathered}
$$

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثئير العربي 20

$$
h^{-1}(z)=w=\frac{3 a z+a-4 b}{3 z-3}
$$

Sends a to ∞ and $(4 b-a) / 3$ to 0 , and map the critical points of N_{2} to the critical points of the quadratic p. use the transformation h to Conjugate the map N_{2}, by the transformation h, to obtain the quadratic, using MATLAB the result could be obtained as:

$$
p(z)=h \circ N_{2} \circ h^{-1}(z)=\frac{3 z^{2}-1}{2} .
$$

We chose The constant factor of h was chosen so that the coefficient of z^{2} became 3/2.

Therefore, we found that under the map h on the Riemann sphere, the dynamics of the relaxed Newton's method N_{2} is conjugate to the dynamics of p.

Figure 1: the Brown area is the basin of attraction, after 100 iterations, of the double root -1 , when N_{2} is applied to $(z+1)^{2} z$.

The previous Figure 1 illustrate the basin of attraction for the double root in the complex plane when the relaxed Newton's method N_{2} is applied to the cubic $g(z)=z(z+1)^{2}$. All initial values in the brown region will converge to the double root $a=-1$, while initial values the blue region do not converge to within 0.001 of a root in 100 iterations.

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

Figure 2: The filled-in Julia set for $p(z)=\left(3 z^{2}-1\right) / 2$

Figure 3: The same as Figure 1, except after 1195 iterations points in the gray area come to within 0.01 of the simple root 0 .

	مجــلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربي 20

Figure 4: the basins of attraction for N_{2} applied to $p(z)=(z+1)^{2}\left(z^{2}+0.25\right)$. After 1000 iterations the point shaded white, light gray and dark gray, come to within 0.01 of the roots $-1, i / 2$ and $-i / 2$, respectively.

Hence the points inside the blue region in figure 1 do converge to the root $b=0$, but do so extremely slowly, as shown in figure 3 . However, there is no complete neighborhood of b in which points all converge to b, since any such neighborhood intersects the Julia set. Points starting on the Julia set will not converge, but will remain on the boundary under iterations of N_{2}.

Benzinger, Burns, and Palmore discuss Newton's method for the family of functions;

$$
f_{\alpha}(z)=(z+\alpha)^{\alpha}(z-1),
$$

For $\alpha=1 / 2$, this gives the function $(z-1) \sqrt{z+0.5}$ and the basins of attraction for Newton's method, this is as the same our figure 1, since it follows from equation $(0.2 .2)$ that the relaxed Newton's method, N_{2}, for $(z-1)^{2}(z+0.5)$ is the same as Newton's method, N for $(z-1) \sqrt{z+0.5}$.

	مجـلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

0.4 Conjugate polynomial of degree $m+1$ and using Newton's method to find the roots

To investigate more generally what happens to the relaxed Newton's method, apply N_{m} to the function $g(z)=q(z)(z-b)^{k}$. Assume that b is not a root of q and assume that q has finite derivative. The root b has order k and;

$$
\begin{gathered}
N_{m}(z)=z-\frac{m g(z)}{g^{\prime}(z)}, \\
g(z)=q(z)(z-b)^{k}, \\
N_{m}(z)=z-\frac{m\left(q(z)(z-b)^{k}\right)}{q(z) \cdot k(z-b)^{k-1}+(z-b)^{k} q^{\prime}(z)},
\end{gathered}
$$

Then we get;

$$
\begin{gathered}
N_{m}(z)=z-\frac{m q(z)(z-b)^{k-1} \cdot(z-b)}{(z-b)^{k-1}\left[k q(z)+(z-b) q^{\prime}(z)\right]} \\
N_{m}(z)=z-\frac{m q(z) \cdot(z-b)}{k q(z)+(z-b) q^{\prime}(z)}
\end{gathered}
$$

New, we find $N_{m}^{\prime}(z)$;

$$
\begin{gathered}
N_{m}^{\prime}(z)=1-\frac{\left[k q(z)+(z-b) q^{\prime}(z)\right] m\left[k q(z)+(z-b) q^{\prime}(z)\right]}{\left[k q(z)+(z-b) q^{\prime}(z)\right]^{2}} \\
-\frac{m\left[q(z)(z-b) \cdot k q^{\prime}(z)+(z-b)^{\prime \prime} q(z) \cdot q^{\prime}(z)\right]}{\left[k q(z)+(z-b) q^{\prime}(z)\right]^{2}} \\
N_{m}^{\prime}(b)=1-\frac{m k q^{2}(b)}{k^{2} q(b)} \Rightarrow N_{m}^{\prime}(b)=1-\frac{m}{k}
\end{gathered}
$$

So that b is a super attractive fixed point only if $k=m$. Otherwise, if $k<$ $\frac{m}{2},\left|N_{m}^{\prime}(b)\right|>1$ and b is a repulsive fixed point. If $k=\frac{m}{2},\left|N_{m}^{\prime}(b)\right|=1$ and b is a neutral fixed point, as the cubic above shows. If $k>\frac{m}{2},\left|N_{m}^{\prime}(b)\right|<1$ and b is an attractive fixed point for N_{m}, but the convergence is only linear, not quadratic.

In the typical situation where we apply the relaxed Newton's method, N_{2} to a function with one double root and no other multiple roots, all the simple roots will

	مجـلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثنير العربي 20

be neutral fixed points. For example, figure 4 shown the basins of attraction for a quartic with one double root. Theorem (3) and its proof can be easily generalized to the relaxed Newton's method N_{m}.

Theorem 3.

The relaxed Newton's method N_{m} applied to any polynomial of degree ($m+1$) with a root of order m, is conjugate by a linear fractional transformation on the Riemann sphere, to the iterations of the quadratic;

Proof:

$$
\begin{align*}
& \because g(z)=(z-a)^{m}(z-b), \\
& N_{m}(z)=z-\frac{m g(z)}{g^{\prime}(z)}, \\
& N_{m}(z)=z-\frac{m[(z-a)(z-b)]}{(z-a)^{m}+m(z-a)^{m-1}(z-b)}, \\
& \quad=z-\frac{m[(z-a)(z-b)]}{(z-a)^{m-1}[(z-a)+m(z-b)]}, \\
& \quad=z-\frac{m[(z-a)(z-b)]}{(z-a)+m(z-b)}, \\
& =\frac{z^{2}-a z+a m z-a b m}{z-a+m z-m b}, \tag{0.4.1}
\end{align*}
$$

by derivative Eq. (0.4.1), we get

$$
\begin{aligned}
N_{m}^{\prime}(z)= & \frac{(z-a+m z-b m)[2 z-a+a m]}{(z-a+m z-m b)^{2}} \\
& -\frac{\left[\left(z^{2}-a z+a m z-a b m\right)(1+m)\right]}{(z-a+m z-m b)^{2}}, \\
& =\frac{z^{2}-2 a z+a^{2}-a^{2} m+m z^{2}-2 b m z+2 a b m}{(z-a+m z-m b)^{2}},
\end{aligned}
$$

If we used the long division we find $z=a$ it be exercise the numerator, then we get;

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثّثد العربي 20 1.5

$$
N_{m}^{\prime}(z)=\frac{(z-a)[(z-a+a m-2 b m+m z)]}{(z-a+m z-m b)^{2}}
$$

After that, we find the critical points for N_{m}^{\prime}

$$
\because N_{m}^{\prime}(z)=\frac{(z-a)[(z-a+a m-2 b m+m z)]}{\left(a-z+b m-m z^{2}\right)}
$$

We put $N_{m}^{\prime}=0$

$$
\begin{aligned}
& (z-a)[(z-a+a m-2 b m+m z)]=0 \\
& \quad(z-a)=0 \Rightarrow z=a \\
& \text { or }[(z-a+a m-2 b m+m z)]=0 \\
& z+m z=a-a m+2 b m \\
& z=\frac{a-a m+2 b m}{1+m}, \quad m \neq-1
\end{aligned}
$$

Now, we use the transformation

$$
h(z)=\frac{z-p}{z-q}
$$

where p is to be transform to zero, and q is to be transform to ∞,

$$
\begin{aligned}
& h_{m}(z)=\frac{z-\left(\frac{a-a m+2 b m}{1+m}\right)}{z-a}, \\
& h_{m}(z)=\frac{\frac{z+m z-a+a m-2 b m}{1+m}}{z-a} \\
&= \frac{z+m z-a+a m-2 b m}{(1+m)(z-a)}
\end{aligned}
$$

Then, we find h_{m}^{-1};

$$
\begin{aligned}
& h_{m}^{-1}(z)=w \rightarrow z=h_{m}(w) \\
& \quad z=\frac{w+m w-a+a m-2 b m}{(1+m)(w-a)}
\end{aligned}
$$

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأنثبر العربي 20

$$
\begin{gathered}
z(1+m)(w-a)=w+m w-a+a m-2 b m, \\
w z-a z+m z w-a m z=w+m w-a+a m-2 b m, \\
w z+m w z-w-m w=a z+a m z-a+a m-2 b m, \\
w(z+m z-1-m)=a z+a m z-a+a m-2 b m, \\
w=\frac{a z+a m z-a-a m-2 b m}{(z+m z-1-m)} \\
=\frac{a z+a m z-a-a m-2 b m}{(z-1)+m(z-1)}, \\
w=\frac{a z+a m z-a-a m-2 b m}{(z-1)(1+m)}=h_{m}^{-1}(z),
\end{gathered}
$$

And by using the MATLAB, the result could be obtained as:

$$
p(z)=h \circ N_{m} \circ h^{-1}=\frac{\left(m z^{2}-m+z^{2}+1\right)}{2}
$$

In particular, when $m=3$, the Julia set of $2 z^{2}-1$ is the line segment on the real axis between -1 and 1 . Then;

$$
\begin{gathered}
p(z)=(z-a)^{3}(z-b) \\
N_{3}(z)=z-\frac{3 g(z)}{g^{\prime}(z)} \\
N_{3}(z)=z-\frac{3\left[(z-a)^{3}(z-b)\right]}{\left[(z-a)^{3}(z-b)\right]^{\prime}} \\
=z-\frac{3[(z-a)(z-a)(z-a)(z-b)]}{\left[(z-a)^{3} \cdot 1+(z-b) \cdot 3(z-a)^{2} \cdot 1\right]} \\
= \\
z-\frac{3\left[(z-a)^{2}(z-a)(z-b)\right]}{(z-a)^{2}[(z-a)+3(z-b)]} \\
\quad=z-\frac{3(z-a)^{2}[(z-a)(z-b)]}{(z-a)^{2}[(z-a)+3(z-b)]}
\end{gathered}
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	معامل التأثّثد العربي 20 1.5

$$
\begin{gathered}
=z-\frac{3[(z-a)(z-b)]}{z-a+3 z-3 b}, \\
=z-\frac{3\left[z^{2}-b z-a z+a b\right]}{4 z-a-3 b}, \\
=\frac{4 z^{2}-a z-3 b z-3 z^{2}+3 b z+3 a z-3 a b}{4 z-a-3 b}, \\
N_{3}(z)=\frac{z^{2}+2 a z-3 a b}{4 z-a-3 b},
\end{gathered}
$$

Then the derivative;

$$
\begin{gathered}
N_{3}^{\prime}(z)=\frac{(4 z-a-3 b)[2 z+2 a]-\left[\left(z^{2}+2 a z-3 a b\right) .4\right]}{(4 z-a-3 b)^{2}} \\
=\frac{8 z^{2}+8 a z-2 a z-2 a^{2}-6 b z-6 a b-4 z^{2}-8 a z+12 a b}{(4 z-a-3 b)^{2}} \\
=\frac{4 z^{2}-2 a z-2 a^{2}-6 b z+6 a b}{(4 z-a-3 b)^{2}} \\
N_{3}^{\prime}(z)=\frac{(z-a)[4 z+2 a-6 b]}{(4 z-a-3 b)^{2}}
\end{gathered}
$$

The fixed point for N_{3} is $z=a, z=b$, to find the critical point we put;

$$
N_{3}^{\prime}(a)=0
$$

Then a the superattractive fixed point. $N_{3}^{\prime}(b)=-2$ it is the neutral fixed point. Then the critical point there is;

$$
\begin{gathered}
N_{3}^{\prime}(z)=0 \\
\therefore N_{3}^{\prime}(z)=\frac{(z-a)[4 z+2 a-6 b]}{(4 z-a-3 b)^{2}}, \\
\frac{(z-a)[4 z+2 a-6 b]}{(4 z-a-3 b)^{2}}=0, \\
(z-a)[4 z+2 a-6 b]=0,
\end{gathered}
$$

	مجـلة الــتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأتئير العربي 20

Then;

$$
\begin{gathered}
(z-a)=0 \rightarrow z=a, \\
\text { or }[4 z+2 a-6 b]=0, \\
z=\frac{3 b-a}{2}
\end{gathered}
$$

therefore, the basin of attraction of the triple root of $(z-a)^{3}(z-b)$ under N_{3} is the whole of the complex plane, except a straight cut from $(3 b-a) / 2$ through b to ∞. For higher values of m, the Julia set is totally disconnected. Since the relaxed Newton's method applied to $g(z)$ is the same as the standard Newton's method applied to $\sqrt[m]{g(z)}$.

REFERENCES

[1] F. V. Haeseler and H.O. Peitgen, Newton's Method and Complex Dynamical Systems, Act Appl. Math. Volume 13, Pages 3-58. 1988;
[2] William J. Gilbert, The complex dynamics of newton's method for a double root. Math. Appli, 22(10): 115-119, 1991.
[3] H. E. Benzinger, S. A. Burins and J. I. Palmore, Chaotic Complex Dynamics and Newton's Method, Phys. Lett. Volume 119, Pages 441-446 ,1987.
[4] P. Blanchard, Complex Analytic dynamics on the Riemann Sphere, Ball. Amer. Math. Soc. Volume 11, Pages 85-141, 1984.
[5] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, AddisonWesley, Reading, Mass,1989.

	Journal of Educational ISSN: 2011-421X Arcif Q3	1.5

الصفحة	اسم الباحث	عنوان البحث	ت,
25-3	زهرة المهـي أبوراس فاطمة أحمد قناو	النسرّب الاراسي لاي طلاب الجامعات	1
43-26	علي فرج جامد فاطمة جبريل القايد	استعمالات الأرض اللزراعية في منطقة سوق الخمس	2
57-44	ابتسام عبد السلام كشيب	تأثير صناعة الإسمنت على البيئة مصنع إسمنت لبدة نموذجاً دراسة في الجغر افية الصناعي	3
84-58	عطية صالح علي الربيقي خالد رمضان الجربوع منصور علي سالم ظليفة	مفهوم الشعر عند نقاد القرن الرابع الهجري	4
106-85	فتحية علي جعفر أمنة محمد العكاشي ربيعة عثمان عبد الجليل	جودة الحياة لدى طلبة كلية التزبية بالخمس	5
128-107	Ebtisam Ali Haribash A.A.H. Abd EL-Mwla	An Active-Set Line-Search Algorithm for Solving MultiObjective Transportation Problem	6
140-129	مفنّاح سالم ثبوت	آليات بناء النص عند بدر شاكر السياب قر اءة في قصيدة تموز جيكور	7
155-141	مفتاح ميلاد الهريف جمعة عبد الحميد شنيب	الجرائم الالكترونية	8
176-156	Suad H. Abu-Janah	On the fine spectrum of the generalized difference over the Hahn sequence space $\boldsymbol{B}(\boldsymbol{r}, \boldsymbol{s}) \quad$ operator h	9
201-177	فوزية محمد الحوات سالمة محمد ضو	دراسة تأثير النضاد الكيميائي Allelopathy لمستخلصات بعض النجاتات Triticum aestivum L. الطبية على نسبة الانبات ونمو نبات القمح	10
219-202	سليمة محمد خضر	الأعداد الضبابية	11
240-220	S. M. Amsheri N. A. Abouthfeerah	On a certain class of $\boldsymbol{p}_{\text {-valent functions }}$ with negative coefficients	12
241-253	Abdul Hamid Alashhab	L'écriture de la violence dans la littérature africaine et plus précisément dans le théâtre Ivoirien Mhoi-Ceul comédie en 5 tableaux de Bernard B. Dadié	13
254-265	Shibani K. A. Zaggout F. N	Electronic Specific Heat of Multi Levels Superconductors Based on the BCS Theory	14

	مجــلة الـتربــوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثير العربي 20

266-301	خالد رمضان محمد الجربوع عطية صالح علي الربيقي	أغراض الشعر المستجدة في العصر العباسي	15
302-314	M. J. Saad, N. Kumaresan Kuru Ratnavelu	Oscillation Criterion for Second Order Nonlinear Differential Equations	16
315-336	صالح عبد السلام الكيلاني ساره مفتاح الزني فـدو ظليل سالم	الققم الجمالية لفن الفسيفساء عند	17
337-358	عبدالمنعم امحمد سالم	مفهوم السلطة عند المعتزلة وإِوان الصفاء	18
359-377	أسماء حامد عبدالحفظ اعليجه	مستوى الوعى البيئي ودور بعض القيم الاجتماعية في رفعه لدى عينّ لـينة من طلاب كلية الآداب الو اقعة داخل نطاق مدينة الخمس.	19
378-399	بنور ميلاد عمر العماري	المؤسسات التعليمية ودورها في الو قاية من الانحر الت والجريمة	20
400-405	Mohammed Ebraheem Attaweel Abdulah Matug Lahwal	Application of Sawi Transform for Solving Systems of Volterra Integral Equations and Systems of Volterra Integro-differential Equations	21
406-434	Eman Fathullah Abusteen	The perspectives of Second Year Students At Faculty of Education in EL-Mergib University towards Implementing of Communicative Approach to overcome the Most Common Challenges In Learning Speaking Skill	22
435-446	Huda Aldweby Amal El-Aloul	Sufficient Conditions of Bounded Radius Rotations for Two Integral Operators Defined by q-Analogue of Ruscheweyh Operator	23
447-485	سعاد مفنّاح أحمد مرجان	مستوى الوعي بمخاطر النتلوث البيئي لاى معلمي المرحلة الثانوية بمدينة الخمس	24
486-494	Hisham Zawam Rashdi Mohammed E. Attaweel	A New Application of Sawi Transform for Solving Ordinary differential equations with Variable Coefficients	25
495-500	محمد على أبو النور فر ج مصطفى الهـار بشير على الطيب	استخدام التحليل الإحصائي لدر اسة العلاقة بين أنظمة الري وكمية المياه المستهكة بمنطقة سوق الخميس - الخس	26
501-511	نرجس ابر اهيم محمد	النقييم المنهجي للمو اد الرياضية و الاحصائية نسبة الى المو اد التخصصية لكلوم الحاسوب	27
512-536	بشري محمد الهيلي حنان سعيد العوراني عفاف محمد بالحاج	طرق التزبية الحدبثة للأطفال	28
537-548	ضو محمد عبد الهادي فاروق مصطفى ايور اوي زهرة صبحي سعيد نجاح عمران المهوي	در اسة للحد من الثلوت الكهرومغناطيسي باستخدام مركب ثاني أكسيد الحديد مع بوليمر حضض الاكتيك	29

	مجــلة الـتـربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثير العربد 20

549-563	Ali ahmed baraka Abobaker m albaboh Abdussalam a alashhab	Cloud Computing Prototype for Libya Higher Education Institutions: Concept, Benefits and Challenges	30
564-568	Muftah B. Eldeeb	Euphemism in Arabic Language: The case with Death Expressions	31
569-584	Omar Ismail Elhasadi Mohammed Saleh Alsayd Elhadi A. A. Maree	Conjugate Newton's Method for a Polynomial of degree $\mathrm{m}+1$	32
585-608	آمنة سالم عبد القادرقدروة آلاء عبدالسلام محمد سويسي ليلى علي محمد الجاعوك	الصحد النفسية وعلافتها بتفير الذات لدى عينة من طلبة كلية الآداب والعلوم / مسلانه	33
609-625	نجاة سالم عبد اله زريق	المساندة الاجتماعية لاى عبنة من المعلمات بمدينة تصر الأخبار وعلاقتها بيعض المتغيرات الديموغر افية "در اسة ميدانية"	34
626-640	محمد سالم ميلاد العابر	"أي" بين الآسمية و الفطلية عاملة ومعمولة	35
641-659	إٕر اهيم فر فج الحويج	التمييز في القر آن الكريم سورة الكهف ألْموذجا	36
660-682	عبد السلام ميلاد المركز رجعة سعيد الجنقاوي	المو ارد الطبيعة و البشرية السياحية بدينة طر ابلس (بلييا)	37
683-693	Ibrahim A. Saleh Abdelnaser S. Saleh Youssif S M Elzawiei Farag Gait Boukhrais	Influence of Hydrogen content on structural and optical properties of doped nano-a-Si:H/a-Ge: H multilayers used in solar cells	38
694-720	فر ج رمضان مفتاح الثبيلي	أجوبة الشيخ علي بن أبي بكر الحضيري $\text { (ت:1061 هـ - } 1650 \text { م) }$	39
721-736	علي خليفة محمد أجويلي	مفهوم الهوية عند محمد أركون	40
737-742	Mahmoud Ahmed Shaktour	Current -mode Kerwin, Huelsman and Newcomb (KHN) By using CDTA	41
743-772	Salem Msauad Adrugi Tareg Abdusalam Elawaj Milad Mohamed Alhwat	University Students' Attitudes towards Blended Learning in Libya: Empirical Study	42
773-783	Alhusein M. Ezarzah Aisha S. M. Amer Adel D. El werfalyi Khalil Salem Abulsba Mufidah Alarabi Zagloom	Integrated Protected Areas	43
784-793	عبد الرحمن المهاي ابومنجل	المظاهر ات بين المانعين والمجوزين	44
794-817	رضا القذفي بشير الاسمر	تنرجيحات الامام الباجي من خلال كتابه المنتقي " من باب العناقة و الو لاء الىى كتاب الجامع	45

	مجـلة الــتربـوي Journal of Educational ISSN: 2011-421X Arcif Q3	1.5 معامل التأثثر العربد 20

$818-829$	Fadela M. Elzalet Sami A. S. Noba omar M. A. kaboukah	IDENTIFICATION THE OPTIMUM PRODUCTION PROCESS OF THE HYDROGEN GAS	46
830			

