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Abstract 

In this paper, a numerical method is presented for finding the solution of 
differential equations. The main objective is to find the approximate solution of 
fractional differential equation of order D . This work is a comparison of some available 
numerical methods for solving  linear "nonlinear" DEqs. of fractional order. However, 
all the previous works avoid the term of fractional derivative and handle them as a 
restricted variation. The present study shows that when these methods are applied to 
linear "nonlinear" DEqs. of fractional order, they have different convergence and 
approximation error. 

Keywords: Fractional Calculus, Caputo fractional differential equations, Picard 
iteration, Gauss-Seidel method, Variationaliteration method. 

1. Introduction 
In recent years, the theory and applications of fractional equations were presented 

research topics in applied sciences; such as applied mathematics, physics, mathematical 
biology and engineering. The rule of fractional derivative is not unique date.Over the 
Past decade the development of numerical methods used for finding solutions of 
ordinary fractional differential equations containing derivatives of integer and non-
integer order. There have been several algorithms published for producing approximate 
solutions for fractional differential equations. 
The developments of theory and applications for approximate solutions of fractional 
differential equations have been completed. We refer to the articles, which work by 
authors as Diethelm, Ford [ see; 8, 9, 10, 11,12,13].   
The approximations and numerical techniques for differential equations of fractional 
order have been main objective in researches. Hence, there are some papers discussing 
numerical methods for solving fractional differential equations.  Also, most the fractional 
equations do not have exact analytic solution. Consequently, we must used approximate 
and numerical techniques. 
 Recently, the analytical approximate solution for linear fractional differential equations 
with initial conditions has been used in [18]. The applications of methods for fractional 
equations was extended by authors in [14,18] 
In this paper, we study the numerical approximate solution for linear differential 
equations of fractional order: 
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Subject to initial conditions:  
( ) (0) , 1,2,..., 1 (1.2)i

iu i mE  �
 

where ,i ia E �  are constants > @0, ;t T� 1 ;m mD� � � f :J R R Ru u o is a 
continuous function,and ( )P t  is known function. Here the notation D D is used for 
Capote fractional derivative. 
Diethelm, to solve the linear and non-linear differential equations recently used methods 
are Predictor-Corrector method [11], Adomain decomposition method [19, 20, 22], 
Homotopy Perturbation Method [12] Variational Iteration Method [15], in [21] the 
author using differential transform method to solving systems of fractional differential 
equations.  
The approximate solutions have been obtained via several classes of fractional 
differential equations, where in [17] introduced discussing for approximate an ordinary 
fractional differential equation by the integer order differential equation with a small 
parameter and permits to find their approximate symmetries. 
In this article, we study fractional differential equations associated to the a derivative. 
Such kind of equations appears in many problems. In particular, we have find a 
fractional differential equation related to the classical Gauss-Seidel method [3], and then 
comparison with the variation iteration method [23], which is confirmed through some 
examples. 
The  purpose of this study is to introduce approximate solutions for fractional differential 
of orderD , 0D ! equations by using modified Picard iteration with Gauss-Seidel 
technique, which proposed by he [3] was successfully applied to solving linear 
(nonlinear) system of ordinary differential equations with initial conditions. 
2. Definitions and properties in fractional calculus 

In this section, we consider the main definitions of fractional derivatives of  order D , 
0D ! , The Caputo and the Riemann-Liouville fractional derivatives [4] are both used 

here  Whereasin mathematical treatises on fractional differential equations the Riemann-
Liouville approach to the notion of the fractional derivative of order D .  we begin by 
introducing the basic definitions:   
Definition 2.1.A real function ( ), 0f t t ! , is said to be in the space �ఓǡ  Թ, if there߳ߤ
exists a real number p P! such that � � � �1

pf t t f t , where � � > �1 0,f t C� �f ,  it 's 

clearly,   C CP E�  if E Pd . 

Definition 2.2.A function ( ), 0f t t ! , is said to be in the space mC P  if  � �mf C P� for 
݉ א Գ  ሼͲሽ. 
Definition 2.3. The  Riemann-Liouville fractional integral operator of order 0D !  of a 
function f CP� , 1P ! , is defined as: 
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where � �.* is the Gamma function. 
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Definition 2.4. The fractional derivative of � �f t in the Caputo derivative is 
defined as follows: 

1
0 0

1( ) ( ) ( ) (2.2)
( )

mtc m
t m

dD f t t s f s ds
m ds

D D

D
� � �

* � ³
where 11 , , mm m m f CD� � d � � , we rewrite last formula as the form: 

( )

0

( ) , 1 ,
( ) (2.3)
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Hence, we have the following properties for f CP�  and 1P t �  have been   proved; 
refer to the works [1, 2, 4, 6, 7, 16]: 
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4- 0 0 0( ) ( ) , , 0c c
t t tD f t I D f tE D E D D E� !  

The existence, uniqueness, and structural stability of solutions of nonlinear differential 
equations of fractional order. It had been discussed in [10]. 
Theorem 2.1 (existence). Assume that D :=ሾͲǡ ሿכݐ ൈ ሾݑሺሻ െ ǡߝ ሺሻݑ   ሿwith someߝ

* 0t >   and some  0e > , and let the function :f  D՜ Թǡ be continuous. Furthermore, 
define ݔ ؔ ��� ቄכݐǡ ሺࣟȞሺȽ  ͳሻȀ�หȁ݂ȁหஶሻ

ଵ ൗן ቅ.  Then, there exists a function  
ǣݑ  ሾͲǡ ሿݔ ՜ Թsolving the initial value problem

( ) ( )
1 0( [ ]) ( , ( )), (0) , 0,1,2,..., 1j j

mD u T u t f t u t u u j ma
-- = = = - , 

 where 1[ ]mT u-  is Taylor Polynomial of order 1m -  for u .  

Theorem 2.2(uniqueness). Assume that D * (0) (0)
0 0: [0, ] [ , ]t u ue e � � �  with some 

* 0t >  and someߝ  Ͳ. Furthermore, let the function :f  D՜ Թ be bounded on D and 
fulfill a Lipschitz condition with respect to the second variable; i.e., 

* *| ( , ) ( , ) | | | . 0f t u f t u L u u with some cons L� � � !  

For the proofs of these two theorems, which was proved by applying the integral 
operator of order D , given by (see; [10]) 

1
0 0

1( ) ( ) ( ) (2.4)
( )

t

tI f t t s f s dsD D

D
� �

* ³  

3. Material and methods 
In this section we will extend iteration method of fractional calculus, we review the 

classical method of successive approximation "Picard iteration", firstly, and so we use 
modified Picard iteration with Gauss-Seidel technique are given in [3].     
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Therefore, rewrite fractional differential equation (1) as the system of differential 
equations of first order, then equation (1) is transformed into the following ; let 

1 ( ) ( )u t u t  
'
1 2
'
2 3

'
1 1 1 2 3 1 2 0 1

(3.1)

( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( )m m m m

u u
u u

u f t P t D u t a u t a u t a u t a u t a u tD
� �

 

 

 � � � � � � �
 
subject to initial conditions: 

(0) , 1,2,..., (3.2)i iu i mE  
Accordingly, the Picard iteration method for system of differential equations (3.1) is 
obtained by the replacement of every equation in (3.1) by using Gauss-Seidel technique, 
the result takes the form: 

1, 1,0 2, 10

2, 2,0 3, 10

, ,0 1, , 1 1 1, 1 2, 0 1,0

( )

( ) 1,2,... (3.3)
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 subject to initial conditions : 

(0) , 1,2,...,i iu i mE   
Consequently, the variational iteration method of fractional differential equation (1.1) 
with initial conditions(2) can be constructed as the form(see,[23]): 

1
1 0 1 1 1 10

1 1 0 1

( ) ( ( ) ( ) ( ) ( ) ...

... ( ) ( ) ( )) (3.4)
0, 1, 2,...

t m m
n n n m t n m t n

t n n

u u t P s D u s a D u s a D u s

a D u s a u s f s ds
t n

DO �
� � � � �

� �

 � � � �

� � �
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³

 

where ,
m

m
t m

dD
dt

 and O is a general Lagrange multiplier. If we repeat the above 

procedure, we have numerical solutions of fractional differential equations for (1.1).  
4. Illustrative Examples 
In the following examples, we consider numerical solutions of fractional differential 
equations of order D , to demonstrate the effectiveness of  the method. 
Example 1. We consider the following fractional differential equation 

31
2 2

8'' ' 2 2 (4.1)
3

u D u u t t
S
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with initial conditions (0) '(0) 0 , ''(0) 2u u u   , 0 1td d ; 
The corresponding system takes the form: 

1
2

'
1 2 1

'
2 2 1 2

(0) 0
(4.2)

82 2 , (0) 0
3

u u u

u t t u D u u
S

  

 � � � �  

 

Accordingly, the classical Picard iteration method takes the form 

1
2

1, 2, 10

3
2

2, 2, 1 1, 10

1 , 1, 2,...
(4.3)

81 (2 2 )
3

t

n n

t

n n n

u u ds n

u s s u D u ds
S
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 � � � � � �
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Hence, the corresponding modified Picard iteration with Gauss-Seidel technique the 
integral will be came: 

3 1
2 2

1, 2, 10

2, 2, 1 1,0

1 , 1,2,...
(4.4)

81 (2(1 ) )
3

t

n n

t

n n n

u u ds n

u s s u D u ds
S

�
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 �  
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Table 1: shows the approximate solutions for Eq. (4.1) obtained for different methods. 
The results showed that the modified Picard iteration with Gauss-Seidel method is 
remarkably effective and performing is very easy. Additionally, it has more accuracy 
than Picard method and variation iteration method. 
 
  Exact PI PI  withݐ

GSM :| |P GSu u-  VIM | |VIMu u-  

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 

0.00
0.01
0.04
0.09
0.16
0.25
0.36
0.49
0.64
0.81
1.00

 

0.00
0.01
0.0400021
0.0900205
0.160106
0.250382
0.361092
0.492655
0.64574
0.821332
1.02082
 

0.00
0.01
0.04
0.09
0.16
0.250001
0.360006
0.490021
0.640062
0.810161
1.00038
 

-12

-10

-8

-7

-6

-6

0.00
4.01971 10
9.41858 10
2.35103 10
2.33746 10
1.39986 10
6.07411 10
0.0000210781
0.0000620574
0.00016105
0.000378167

�
�
�
�
�
�

 

0.00
0.01
0.03999999996
0.08999999924
0.15999999207
0.24999994397
0.35999970314
0.48999873765
0.63999547869
0.80998587172
0.999960462
 

-13

-11

-10

-9

-8

-7

-6

-6

0.00
3.46178 10
3.75077 10
7.56081 10
7.93355 10
5.60354 10
2.96859 10
1.26235 10
4.52131 10
0.0000141283
0.0000395377

�
�
�
�
�
�
�
�

 

Table 1: shows the approximate solutions for Eq. (4.1) 
eighth  iterations which was obtained for different methods 
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Now, we compare the seventh and eighth iterations Picard iteration, modified Picard 
with Gauss-Seidel method and variation iteration method with the exact solution on the 
graphs. These comparisons can be seen in figures 1, 2. 

 
 

 

 
 

 
 

Figure 1: Comparison of approximate results for different methods 

 
Figure 2: Comparison of eighth iteration approximate results of modified 

 GSM and VIM with the exact solutions for eq. (4.1). 

 

Example 2. We consider the following fractional differential equationof order 1
2D   

31
2 2

4 2'' ' (4.5)
3

u D u u t t t
S S

� �  � �  

With initial conditions (0) 0, '(0) 1 , ''(0) 1u u u  �  , 0 1td d ; 
Applying the modified Picard iteration with Gauss-Seidel method, we get the following 
corresponding system: 

3 1
2 2

1, 1,0 2, 1 10

2 1,0 2, 1 1, 20

(0) 0
(4.6)

4 2( ) (0) 1
3

t
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t

n n

u u u ds u

u u s s s u D u u
S S
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Table 2: shows the approximate solutions for Eq. (4.5) obtained for different methods. 
The results showed that the modified Picard iteration with Gauss-Seidel method is 
remarkably effective and performing is very easy. additionally, it has more accuracy 
than Picard method and  variation iteration method. 
  Exact PI PI  with GSMݐ

:| |P GSu u-  VIM | |VIMu u-  
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0  

0.0
 0.095
 0.18
 0.255
 0.32
 0.375
 0.42
 0.455
 0.48
 0.495
 0.5

-
-
-
-
-
-
-
-
-
-

 

  0.0
 0.095
 0.18
 0.255002
 0.320009
 0.375026
 0.420059
 0.455116
 0.4802
 0.495315
 0.500463

-
-
-
-
-
-
-
-
-
-

 

 0.00
 0.095
 0.18
 0.255
 0.32
 0.375
 0.420001
 0.455005
 0.480016
 0.495044
 0.500109

-
-
-
-
-
-
-
-
-
-  

-13

-10

-9

-8

-7

-6

-6

0.00
3.94032 10
1.23321 10
3.6863 10
4.18749 10
2.79196 10
1.32694 10
4.98825 10
0.0000157847
0.000043773
0.000109352

�
�
�
�
�
�
�

 

0.0
-0.0942578
-0.176293
-0.246077
-0.304239
-0.351864
-0.390581
-0.422926
-0.453061
-0.488049
-0.539968

 

0.0
0.000742164
0.00370736
0.00892336
0.0157607
0.0231364
0.0294194
0.0320741
0.0269391
0.00695145
0.0399684

 

Table 2: shows the approximate solutions for Eq. (4.5) 
seventh iteration which was obtained for different methods.  

The compare of the sixth and seventh iterations for Picard iteration, modified Picard 
with Gauss-Seidel method and variation iteration method with the exact solution appear 
on the graphs. These comparisons can be seen in figures 3,4. The results are in good 
agreement with the results of the exact solutions. 

  
Figure 3 Comparison of approximate results for different methods 

 
Figure 4 Comparison of seventh iteration approximate results of modified 

GSM and VIM with the exact solutions for eq. (4.5). 



 
 

 
(270) 

 

 

Example 3. We consider the following fractional differential equationof order 3
2D   

3
23

2

5
2 28'' ' 3 6 (4.7)

6 12 12
tu tD u u t t t t tS S

S
� �  � � � � �  

with initial conditions (0) 0, '(0) 0 , ''(0)
12

u u u S�
   , 0 1td d ; 

Applying the modified Picard iteration with Gauss-Seidel method, we get the following 
corresponding system: 

3
2 3

2

1, 1,0 2, 1 1 20

5
2 2

2, 2,0 2, 1 1,0

(0) 0 , (0) 0 (4.8)

8(3 6 )
6 12 12

t

n n

t

n n n

u u u ds u u

su u s s s s s u sD u dsS S
S

�

�

 �   

 � � � � � � � �

³

³
Table 3: shows the approximate solutions for Eq. (4.7) obtained for different methods. 
The results showed that the modified Picard iteration with Gauss-Seidel method is 
remarkably effective and performing is very easy. 

  Exact PI PI  with GSMݐ
:| |P GSu u-  VIM | |VIMu u-  

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 

0.0
0.000261478
0.00504591
0.0203533
0.0521836
0.106537
0.189413
0.306812
0.464735
0.66918
0.926148

 

0.0
0.000261477
0.00504588
0.0203526
0.052177
0.1065
0.189261
0.30632
0.463394
0.665988
0.919333

 

0.0
0.000261478
0.00504591
0.0203533
0.0521836
0.106537
0.189413
0.306813
0.464737
0.669184
0.926148

 

-13

-12

-10

-9

-8

-7

-7

-6

-6

-7

0.0
1.82736 10
6.10811 10
3.3046 10
6.51023 10
5.29252 10
2.69198 10
9.78959 10
2.61633 10
4.56682 10
2.89022 10

�
�
�
�
�
�
�
�
�
�

 

0.0
0.000261478
0.00504591
0.0203533
0.0521836
0.106537
0.189413
0.306812
0.464734
0.669179
0.926147

 

-14

-12

-11

-10

-9

-8

-7

-7

-6

-7

0.0
3.01696 10
3.9601 10
8.11533 10
8.56785 10
6.12635 10
3.26002 10
1.3515 10
4.37791 10
1.01397 10
8.00177 10

�
�
�
�
�
�

�
�
�
�

 

Table 3: shows the approximate solutions for Eq. (4.7) 
ninth iteration which was obtained for different methods.  

 
We compare the eighth iteration and ninth iteration .For Picard iteration, modified 
Picard with Gauss-Seidel method and variation iteration method with the exact solution 
on the graphs. These comparisons can be seen in figures5,6. The results are in good 
agreement with the results of the exact solutions. 
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Figure 5 Comparison of approximate results for different methods 

 
Figure 6 Comparison of ninth iteration approximate results of modified 

GSM and VIM with the exact solutions for eq. (4.7). 

 

Example 4. We consider the following fractional differential equation of order 5
2D   

5
2

5
2 24''' '' 2 2 (4.9)u t D u u t t t

S
� �  � �  

with initial conditions (0) 0, '(0) 0, ''(0) 0, '''(0) 2u u u u    , 0 1td d . 

 
 
Applying  the modified Picard iteration with Gauss-Seidel method, we get the following 
corresponding system: 
 
 

5
2

1, 1,0 2, 1 10

2, 2,0 3, 1 20
5

22
3, 3,0 3, 1 1, 30

(0) 0
(4.10)

(0) 0

4(2 2 ) , (0) 0

t

n n

t

n n

t

n n n

u u u ds u

u u u ds u

u u s s u s D u ds u
S

�

�

�

 �  

 �  

 � � � � �  
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Table 4: shows the approximate solutions for Eq. (4.9) obtained for different methods. 
The results showed that the modified Picard iteration with Gauss-Seidel method is 
remarkably effective and performing is very easy. 
  Exact PI PI  with GSMݐ

:| |P GSu u-  VIM | |VIMu u-  

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
 

0.0
0.000333333
0.00266667
0.009
0.0213333
0.0416667
0.072
0.114333
0.170667
0.243
0.333333
 

0.0
0.000333455
0.0026707
0.00903215
0.0214765
0.0421287
0.073213
0.117087
0.176271
0.253458
0.351508
 

0.0
0.000333333
0.00266668
0.00900028
0.0213352
0.0416746
0.072024
0.11439
0.170775
0.243168
0.333538
 

-10

-8

-7

-6

-6

0.0
1.18804 10
1.69048 10
2.78192 10
1.90339 10
7.96436 10
0.0000240288
0.0000566307
0.000108142
0.000168016
0.000204398

�
�
�
�
�

 

0.0
0.000333333
0.00266667
0.009
0.0213333
0.0416667
0.072
0.114333
0.170667
0.243
0.333333
 

-16

-14

-12

-11

-11

-10

-9

-8

-8

-8

0.0
1.75966 10
9.24512 10
2.7276 10
1.99798 10
1.01595 10
7.1958 10
6.15714 10
3.06034 10
9.82856 10
9.28892 10

�
�
�
�
�
�
�
�
�
�

 

Table 4 shows the approximate solutions for Eq. (4.9) 
eighth  iteration which was obtained for different methods.  

The comparison of the seventh and eighth  iterations Picard iteration, modified Picard 
with Gauss-Seidel method and variation iteration method with the exact solution appear 
on the graphs. These comparisons can be seen in figures 7,8 The results are in good 
agreement with the results of the exact solutions. 

 
Figure 7 Comparison of approximate results for different methods 

 
Figure 8 Comparison of eighth iteration approximate results of modified 

GSM and VIM with the exact solutions for eq. (4.9). 
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5. Conclusion  
The fundamental goal of article is to construct the approximate solutions of 

fractional derivatives of order .D the aim has been achieved by using the classical Picard 
method, the modified Picard method and compared them with VIM to investigate the 
efficiency of improved Gauss-Seidel technique against classical Picard iteration and 
comparison to the VIM. Those methods are based on the numerical approximation of 
the fractional derivatives and integral in the continues time. Although several of the 
earlier papers rely on the smoothness of the solution to prove results on the rates of 
convergence. This is the classical approach from ordinary differential equations. 
However, for fractional equations even polynomial solutions may become non-smooth 
following fractional order differentiation. Therefore we explore briefly whether the 
form of the solution affects the performance of the method. Consequently, the  modified 
method is a powerful and efficient technique for the solution linear fractional 
differential equations. It provides the analyst with an easily computable, readily 
verifiable and rapidly convergent sequence of analytic approximate functions for the 
solution, and also are relatively better as expected. 
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