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A B S T R A C T  

The paper introduces a Maximum Area Aggregation (MAA) approach for Cumulant-Based Probabilistic 

Optimal   Power Flow (P-OPF) studies.  The Maximum Area Aggregation (MAA) approach relies on 

the Cumulant Method (CM) to produce Probability Density Functions (PDFs) in the limited and the 

original cases, and then combines these PDFs to generate the final PDF for all system variables. The 

probabilities that system variables reach their limits are computed and the maximum probability is 

extracted and used to find the final PDF by aggregating the PDFs (the original PDFs and the limited 

ones). The proposed approach is verified against Monte-Carlo Simulation (MCS) consisting of 10,000 

samples and compared with the original Cumulant Method (CM). The results of MAA approach 

demonstrate significant improvements when compared with traditional CM results. 

 

Keywords: Maximum Area Aggregation (MAA), Monte Carlo Simulation (MCS), Optimal Power Flow, 

Probabilistic Optimal Power Flow (P-OPF), Probability Density Functions (PDFs). 

 

1 Introduction 

 Power systems are stochastic in nature, this fact made most publications introduce 

computational  methods for  solving power flow problems using only deterministic Optimal 

Power Flow (OPF) approaches [1]–[5]. However, in recent years, Probabilistic Optimal Power 

Flow (P–OPF) problems have been developed, which address random quantities such as bus 

loading and generator bids, (for example [6]–[13]). Probabilistic Optimal Power Flow (P–OPF) 

seeks a distribution for system variables and represents this distribution using Probability 

Density Function (PDF) [14]–[16]; that is, each individual point on the PDF represents an 

optimal solution for a certain randomly generated input. 
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Probabilistic techniques have been used to account for random quantities within power 

systems since the early seventies [2]. There are many papers published regarding the 

introduction of random quantities, such as power demand, into the ordinary Power Flow (PF) 

problems [17]–[19].  

Monte Carlo Simulation (MCS) technique is an easy way to account for uncertainty in power 

systems [17], [20]–[22]. Although this technique provides accurate results, and it is easy to 

implement, it involves a large number of trials, which makes it computationally expensive and 

time consuming. The computational expense of MCS has led to the foundation of alternative 

methods such as the Cumulant Method [9], [10], [23]–[29]. The Cumulant Method has been 

shown to be well suited for traditional OPF type problems. In [11], the authors introduce an 

adaptation of a Two-Point Estimate Method (2PEM), which was proposed in [30], to a market 

based P–OPF. Recently, a P-OPF was studied including wind generator bids as in [31]. In [12], 

a comparison of the two-point estimate method (2PEM) and the CM to find PDFs of 

Locational Marginal Prices (LMP) in a deregulated electricity market is introduced. When 

applied to a problem based on electricity markets (where generator bids are considered as the 

input uncertainty), the CM method tends to produce poor results as the CM cannot capture 

discrete changes in the merit order. In this paper, a new solution approach, called the Maximum 

Area Aggregation (MAA), to a market-based problem is proposed based on the CM. The 

Maximum Area Aggregation (MAA) approach relies on the CM to produce Probability Density 

Functions (PDFs) in the limited and the original cases, and then combines these PDFs to 

generate the final PDF for all system variables. 

2 Cumulant Method For P-OPF. 

   This section provides a brief background on the adaptation of the Cumulant Method to a 

Market-Based P–OPF to highlight the limitation of the standard CM when applied to such 

problems. Further details on the fundamentals of the Cumulant Method can be found in [9], 

[10], [26]–[29], [32]. The Cumulant Method (CM) is based on linearly mapping cumulants of 

known random variables (bus loading) into the cumulants of unknown random variables (active 

and reactive power generation, bus voltage magnitudes, and phase angles) [9], [14]. 

2.1  Mathematical Formulation of CM  
Given a random variable x with a Probability Density Function (PDF)	f$(x), the mean  µ( 

is the expected value of x and is stated as [14]: 



Third Conference for Engineering Sciences and Technology (CEST-2020) 
01-03 December 2020 /Alkhoms - Libya 

 

CEST2020-DEC-03-059-4 3 

  µ( = E[x] = ∫ xf$(x)dx
/
0/                                                                                               (1) 

Cumulants are a statistical measure of a random variable and are calculated based on the 

cumulant generating function 	Ψ$(s)   . The cumulant generating function  Ψ$(s)    is defined 

as the natural logarithm of the moment generating function and is written as: 

Ψ$(s) = ln	(Φ((s))                                                                                                              (2) 

Where the moment generating function Φ((s)	is defined as: 

Φ((s) = E(e7()                                                                                                                    (3) 

The n89 order moment is computed by taking the n89 derivative of (3) with respect to s and 

evaluating at s = 0. 

    Therefore, to generate the n89  order cumulant λ;  for the random variable x, the n89 

derivative of equation (2) with respect to s is taken and evaluated at s = 0. 

    Since any given system includes many random inputs, the combination of two or more 

random variables is essential [32]. The linear combination of m known and independent 

random variables (x<, x>, ……… . xA) is given by: 

z = a<x< + a>x> +⋯+ aAxA                                                                                           (4) 

where z is a new random variable and 𝑎<, 𝑎>, ..., 𝑎G are the mapping coefficients. 

      In market-based systems, prices are no longer modelled as deterministic variables; rather, 

prices are modelled as random variables. As a consequence, Locational Marginal Prices (LMP) 

change in response to changes in bids.  

     A simple deterministic OPF problem formulation based on a bidding based model [33] is 

given as: 

 

𝑚𝑖𝑛
𝑠. 𝑡

𝐶N𝑃PQR
ℱ(𝑋) = 0
𝑋 ≥ 𝑋GWR
𝑋 ≤ 𝑋GYZ

                                                                                                               (5) 

where 𝑪N𝑃PQR  is the objective cost function, C is a vector of generator bids, 𝑃PQR  is a vector 

of the active power generation,	ℱ(𝑋) is a vector of AC power flow equations, X represents 

the unknown variables (active and reactive power generation, voltage magnitudes and phase 

angles), and 	𝑋GWR,	𝑋GYZ   are the lower and upper limits. 

    Equation (5) represents the main market-based P–OPF problem (i.e. minimizing the cost 

of power generation). The formulation of such problems and the CM solution technique 

follows a similar pattern to that presented in [9], [10], [32]. This technique is based on 
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incorporating bus loading and generator bids as random variables into the OPF problem. The 

first-order KKT optimality conditions of (5) are found and written as: 

  𝐹(𝒀, 𝑳, 𝑪) 	= 	0                                                                                                                (6) 

where 𝐹(·) is the set of equations defining the first-order KKT conditions,	𝒀 is the vector of 

conventional problem variables including slack variables and Lagrange multipliers, 𝑳 is the 

vector of bus loading, and 𝑪 is the vector of generator bids. 

    Lagrange Multipliers associated with AC power-flow equations as equality constraint, 𝛾<, 

are of special interest. Those Lagrange Multipliers are directly related to the costs 𝐶  [33]. 

Moreover, 𝛾<  represents a vector of spot prices in the system, known as Locational Marginal 

Prices (LMP). 

   In order to find the cumulants of the conventional problem variables, 𝒀, a linear relationship 

between 𝒀, 𝑳, and 𝑪 is developed by taking the full derivative of (6) as follows: 

ℋ∆𝒀	 + ∆ˆ𝑳 + ∆ˆ𝑪 = 	0																																																																																																																		(7)                                                       

where 

∆ˆ𝑳 = [0	0	0	0	𝚫𝑳	0	0	0	0	0]N                                                                                          (8a) 

∆ˆ𝑪 = [0	0	0	0		0	0	0	0	0	𝚫𝑪]N                                                                                       (8b) 

and 𝚫𝑳 and 𝚫𝑪 are vectors of the changes in the input random variables (bus loading and bid 

prices). The expression (7) can be rearranged into the following form: 

∆Y	 = −ℋ0<∆ˆL−ℋ0<∆ˆC																																																																																																													(9) 

Therefore, for areas around the mean solution, changes in system variables Y are linearly 

related to changes in bus loading L and generator bids	C. The negative inverse of the Hessian 

of the Lagrangian matrix,	−ℋ0<, is used to map cumulants of the input random variables into 

cumulants of system outcomes. 

Once the cumulants for the conventional problem variables are found utilizing (4) and (9), 

PDFs for these variables are then rebuilt using the Gram-Charlier series theory [9].  

2.2  Comparison Methods 
      Comparison between the proposed approaches’ results and the MCS is done through the 

use of the Normalized Sum of Square Error (NSSE) and the Averaged NSSE (ANSSE) [34]. 

In order to calculate NSSE, the sum of square error (SSE) is found using: 

𝑆𝑆𝐸 = ∑ (𝑓m(𝑖) − 𝑓n(𝑖))>R
Wo<                                                                                             (10) 
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where 𝑓m(𝑖) is the reference value at point i (based on a 10,000 sample MSC), 𝑓n(𝑖) is the 

computed value at i, and n is the total points taken for comparison. The NSSE is then 

computed as: 

𝑁𝑆𝑆𝐸 = ∑ (qr(W)0qs(W))tu
vwx
∑ (qr(W))tu
vwx

                                                                                                  (11) 

Finally, the ANSSE is computed using: 

𝐴𝑁𝑆𝑆𝐸 = ∑ z{{|v}
vwx

G
                                                                                                         (12) 

where m is equal to the number of generator buses (gb) for active and reactive power error 

calculation, m is equal to the number of buses (nb) for voltage magnitude error calculation, 

and m is equal to the number of non-slack buses (nsb) for phase angle error calculation. 

3  Maximum Area Aggregation (MAA) Approach. 

The original Cumulant Method presented in [9], [10], [32] does not take active limits, away 

from the mean solution, into account while solving the P-OPF problem. To account for limits 

becoming active away from the mean using the CM, the P-OPF problem is solved again with 

the variable being fixed at its active limit. The PDFs obtained with the variable being fixed at 

its active limit show the behaviour of the system and provide information relevant to a case 

when the limit is active. The original PDFs, together with the PDFs obtained with the variable 

being fixed at its active limit, are then aggregated to generate the final corrected PDFs. 

Probability Density Functions generation and aggregation is summarized in the following 

steps:   

1) Probability density functions of all unknown variables are found using the standard 

CM described in [26] and [32].                                              

F$�(X�) = 	

⎣
⎢
⎢
⎢
⎡F��

(V�)
F��(δ�)
F��(P�)
F��(Q�)⎦

⎥
⎥
⎥
⎤
                                                                                        (13) 

Where 𝐹��(𝑉�) ∈ ℛ
R�×<  , 𝐹��(𝛿�) ∈ ℛ

(R�0<)×<  , 𝐹��(𝑃�) ∈ ℛ
RP�×<  , 𝐹��(𝑄�) ∈

ℛRP�×<  are the probability density functions of voltage magnitudes, phase angles, 

active power generation, and reactive power generation respectively. 

2) Active limits in the system are found by computing the areas probabilities [14, 15] that 

the variables values exceed the imposed limits. This is done by integrating the original 

PDFs, 𝐹��(𝑋�), past the upper limits as follows [14]: 
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𝑎�W = ∫ 𝑥W𝑓�v(𝑥W)𝑑𝑥
/
�}¡¢v

                                                                                      (14) 

where 𝑎�W is the area under the PDF that extends past the limit 𝑋GYZv  for the  random 

variable 𝑋W. It is noteworthy that if the lower limit is active, the area	𝑎�W (14) becomes: 

𝑎�W = ∫ 𝑥W𝑓�v(𝑥W)𝑑𝑥
�}vuv
0/                                                                                      (15) 

where 𝑎�W is the area under the PDF that extends past the limit 𝑋GYZv  for the random 

variable  x£. 

The value of 𝑎�W indicates the ratio, expressed out of 1, that the variable exceeds its 

limit; that is, the variable value is greater/smaller than the limit for x£. For m variables, 

the vector A is written as: 

𝐴 = [𝑎�< 𝑎�> . . . 𝑎�G]N                                                                            (16) 

For the problems considered in this paper, m equals two times the number of 

generator buses plus two times the number of buses in the system minus 1, since the 

angle of the slack bus is assumed known (i.e. the voltage angle reference). Since the 

upper limit in (14) is ∞ and the lower limit in (15) is -∞, none of the elements in A 

will equal zero. Hence, the value 0.1 was chosen as the largest negligible area; that is, 

the areas that are smaller than 0.1 will not be considered, since they have no significant 

effect. Although this value was chosen based on experience, it was found that the 

sensitivity of the results to this choice is low (for example, setting the threshold of 

0.11 or 0.09 has negligible impact on the final results). 

3) Since the areas presented in the set A are equal to the probabilities that the variables 

reach their limits, the variable corresponding to the largest element in A is most likely 

to reach its limit first. Hence, the limit corresponding to the largest element in A is 

assumed to be the cause of the distortion. Accordingly, for the largest element in A, 

𝑎�GYZ where 𝑎�GYZ ≥ 0.1, the CM is then applied again to obtain new PDFs, 

𝐹�¡¥}¡¢
¦𝑋Y�}¡¢§, corresponding to the case when the limit is active; that is, the P-OPF 

problem is solved with the variable corresponding to	𝑎�GYZ being fixed at its active 

limit. Solving the P-OPF problem with the variable corresponding to 𝑎�GYZ  being 

fixed at its active limit results in new PDFs associated with the limited case. Using this 

approach, the following PDFs are found: 
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𝐹�𝑎�𝑚𝑎𝑥¦𝑋𝑎�𝑚𝑎𝑥§ = 	

⎣
⎢
⎢
⎢
⎢
⎡𝐹�𝑎�𝑚𝑎𝑥¦𝑉𝑎�𝑚𝑎𝑥§

𝐹�𝑎�𝑚𝑎𝑥¦𝛿𝑎�𝑚𝑎𝑥§

𝐹�𝑎�𝑚𝑎𝑥¦𝑃𝑎�𝑚𝑎𝑥§

𝐹�𝑎�𝑚𝑎𝑥¦𝑄𝑎�𝑚𝑎𝑥§⎦
⎥
⎥
⎥
⎥
⎤

                                                                        (17) 

4) In this step, the PDFs obtained in Step 1, (13), and in Step 3, (17), are aggregated 

together to form the final corrected PDFs, 𝐹�s(𝑋n). Since the scaler 𝑎�GYZ  presents 

the probability that the system is limited, the probability that the system is not limited 

is equal to the scalar (1-𝑎�GYZ). Hence, the aggregation to find the final corrected 

PDFs is done by adding (1-𝑎�GYZ) , 𝐹��(𝑋�) to	𝑎�GYZ𝐹�¡¥}¡¢
¦𝑋Y�}¡¢§ as follows: 

𝐹�s(𝑋n) =(1-𝑎�GYZ)  𝐹��(𝑋�) +	𝑎�GYZ𝐹�¡¥}¡¢
¦𝑋Y�}¡¢§                                      (18) 

Note that equation (18) produces new PDFs which are combination of the original 

PDFs and the limited ones. This aggregation, (18), is applied to all unknown variables, 

except for the variable that corresponds to 𝑎�GYZ in the set A. 

• For any variable that reaches a limit, the integration (14) is utilized to correct the 

original PDFs into the final corrected PDFs. The use of integration to correct the 

limited PDFs is summarized in the following steps: 

a) Compute the area under the original PDF that extends past the limit. For the 

case where the distribution extends past an upper limit, (14) can be used to 

compute the area to the right of the limit. For the case where the distribution 

extends past a lower limit, (15) can be used to compute the area to the left of 

the limit. 

b) The excess area is compressed to the limit imposed. The overall area under 

the PDF is still unity but the result is no longer a smooth function. However, 

the MCS results are also limited by the constraint in the problem and exhibit 

non-smooth behaviour as well. 

c) In order to compare the P-OPF result with the MCS histogram, the 

probability associated with the limited value is divided by the bin width of 

the histogram so that the amplitudes are comparable. Once this is completed, 

the final bin of the histogram can be directly compared with the PDF 

computed by the P-OPF method and corrected through the use of 

integration. 
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4 Numerical Results      

      Numerical results presented in this paper are based on applying the CM using the MAA 

approach to the economic P-OPF problem to the IEEE 30-bus system [35]. A MATLAB 

program is used for simulation.    

      It is noteworthy that the CM results and results of the CM using the MAA approach are 

exactly the same if the original IEEE 30-bus data file is used; that is, without modifying the 

lower/upper limits, no limits are encountered. Hence, the upper limit of the active power 

generation at bus 5 was reduced from 1 p.u to 0.3 p.u to force the upper limit at this particular 

bus to be active. With this modification to the upper limit of the active power generation at 

bus 5, there is significant distortion to the results for other system variables. 

 
Figure 1: IEEE 30 Bus Test System, Probability Density Function of Active Power Generation at 

bus 5, 𝑓�¨©uª(𝑃PQR«), Results of the CM Using Maximum Area Aggregation 
 

Figure 1 depicts the final corrected PDF of active power generation at bus 5, when the upper 

limit is active. The dotted line represents the final corrected PDF,	𝐹�s(𝑋n), the solid line 

represents the original uncorrected PDF ,	𝐹��(𝑋�),  and the histogram represents MCS. From 

Figure 1, results of the CM using the MAA approach are much closer to MCS than the original 

CM results. 

Figure 2 depicts the final corrected PDF of active power generation at bus 8 when the upper 

and lower limits are not active. It is noteworthy that the MAA approach accurately estimates  
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Figure 2: IEEE 30 Bus Test System, Probability Density Function of Active Power Generation at 

bus 8, 𝑓�¨©u¬(𝑃PQR), Results of the CM Using Maximum Area Aggregation 
 

PDFs of system variables that have active limits, yet fails to accurately estimate PDFs of other 

system variables. Variables that have active limits are corrected using the integration, (14). 

Hence, a significant improvement is noticed, see Figure 1. The other variables, however, are 

corrected using (18). 

The way the formula (18) combines the PDFs causes insignificant improvement in the results; 

that is, (18) combines both the limited and the original curves in their entirety. This approach 

is likely to produce satisfactory and accurate results compared with the CM against MCSs. 

Table 1: IEEE 30 Bus Test System, ANSSE of Optimal Power Flow Variables for the CM and the 
MAA 

Power System Variables ANSSE (CM) ANSSE (MAA) 
Active Power 0.1964 0.0240 

Reactive Power 0.0031 0.0029 
Voltage Magnitude 0.0086 0.0066 

Phase Angle 0.0296 0.0180 
 

Average error results for the active and reactive power generation, voltage magnitudes, and 

phase angles, for the CM and the MAA approach. It is noteworthy that the ANSSE of the 

active power generation improved from 19:64% to 2:40% and for the phase angles from 2:96% 

to 1:8% for the CM and the MAA respectively. The ANSSE of reactive power generation and 

voltage magnitudes, for the CM and MAA, are also improved but not as well though. 
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5 Conclusion      

A Maximum Area Aggregation (MAA) approach for Cumulant-Based Probabilistic Optimal   

Power Flow (P-OPF) studies is introduced.  The new approach relies on the Cumulant Method 

(CM) to produce Probability Density Functions (PDFs) in the limited and the original cases, 

and then combines these PDFs to generate the final PDF for all system variables. The 

probabilities that system variables reach their limits are computed and the maximum 

probability is extracted and used to find the final PDF by aggregating the PDFs (the original 

PDFs and the limited ones). A MATLAB program is written and used to verify the proposed 

approach against Monte-Carlo Simulation (MCS) consisting of 10,000 samples and compared 

with the original Cumulant Method (CM). The Averaged NSSE (ANSSE) is computed and 

used to present the improvement. The results of MAA approach demonstrate significant 

improvements when compared with traditional CM results. 

References 

[1] M. Huneault and F. Galiana, “A survey of the optimal power flow literature,” IEEE Transactions on Power Systems, 
vol. 6, May 1991. 

[2] M. T. Schilling, A. L. da Silva, R. Billinton, and M. El-Kady,  bliographyon power system probabilistic analysis (1962 
- 1998),” IEEE Transactions on  power Systems, vol. 5, no. 1, February 1990. 

[3] G. L. Torres and V. H. Quintana, “Optimal Power Flow by a Nonlinear Complementarity Method,” IEEE Transactions 
on Power Systems, vol. 15, no. 3, pp. 1028–1033, August 2000. 

[4] R. Jabr, A. Coonick, and B. Cory, “A Primal-Dual Interior Point Method 
for Optimal Power Flow Dispatching,” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 654–662, August 
2002. 

[5]  V. A. de Sousa, E. Baptistaand, and G. Costa, “Optimal power flow via interior-exterior method,” Power Engineering 
Society General Meeting, 2007. IEEE, June 2007. 

[6]  M. Madrigal, K. Ponnambalam, and V. H. Quintana, “Probabilistic optimal power flow,” IEEE Canadian Conference 
on Electrical and Computer Engineering, vol. 1, May 1998. 

[7]  T. Yong and L. R.H., “Stochastic optimal power flow: formulation and 
solution,” Power Engineering Society Summer Meeting, 2000. IEEE, vol. 1, pp. 237 – 242, 2000. 

[8]  K. L. C. K.A. and D. P.W., “Stochastic opf via bender’s method,” Power Tech Proceedings, 2001 IEEE Porto, vol. 3, 
2001. 

[9]  A. Schellenberg, W. Rosehart, and J. Aguado, “Cumulant-based probabilistic optimal power flow (P-OPF) with 
Gaussian and gamma distributions,” IEEE Trans. on Power Systems, vol. 20, no. 2, pp. 773–781, May 2005. 

[10] A. Schellenberg and W. Rosehart and J. Aguado, “Cumulant based probabilistic optimal power flow (P-OPF),” in 
Proceedings of the 2004 International Conference on Probabilistic 
Methods Applied to Power Systems, Sept 2004, pp. 506–511. 

[11] G. Verbiˇc and C. A. Ca˜nizares, “Probabilistic Optimal Power Flow in 
Electricity Markets Based on a Two-Point Estimate Method,” pp. 1883– 
1893, Nov 2006. 

[12] G. Verbic, A. Schellenberg, W. Rosehart, and C. A. Canizares, “Probabilistic optimal power flow applications to 
electricity markets,” International Conference on Probabilistic Methods Applied to Power Systems, vol. 1, no. 1, pp. 
348–353, June 2006. 

[13]  A. Schellenberg, W. Rosehart, and J. Aguado, “Cumulant based stochastic optimal power flow (s-opf) for variance 
optimization,” Power Engineering Society General Meeting, 2005. IEEE, vol. 1, pp. 473 – 478, June 2005. 

[14]  A. Papoulis and S. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. McGraw Hill, 2002. 
[15] S. M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 3rd ed. Academic Press, 2004. 
[16] M. Kendall and A. Stuart, The Advanced Theory of Statistics, 2nd ed. 



Third Conference for Engineering Sciences and Technology (CEST-2020) 
01-03 December 2020 /Alkhoms - Libya 

 

CEST2020-DEC-03-059-4 11 

Charles Griffin, 1963. 
[17]  C. Sufana, G. Heydt, and P. Sauer, “A Linearised Technique and Monte Carlo Simulation for Stochastic Power Flow 

Studies of Electric Power 
Systems,” in Modeling and Simulation, 1975, pp. 7–11. 

[18]  B. Borkowska, “ Probabilistic Load Flow ,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 3, 
pp. 752–759, May-June 1974. 

[19]  R. Allan, B. Borkowska, and C. Grigg, “ Probabilistic Analysis of Power Flows ,” Proceedings of the Institution of 
Electrical Engineers, vol. 121, no. 12, pp. 1551–1556, December 1974. 

[20]  K. Timko, A. Bose, and P. Anderson, “Monte Carlo Simulation of Power System Stability,” IEEE Transactions on 
Power Apparatus and Systems, vol. 102, no. 10, pp. 3453–3459, October 1983. 

[21]  A. L. da Silva and V. Arienti, “Probabilistic load flow by a multilinear simulation algorithm,” IEEE Proceedings C 
(Generation, Transmission and Distribution), vol. 137, no. 4, pp. 276–282, July 1990. 

[22]  R. Billinton and L. Gan, “Use of Monte Carlo Simulation in Teaching Generating Capacity Adequacy Assessment,” 
IEEE Transactions on Power Systems, vol. 6, no. 4, pp. 1571–1577, November 1991. 

[23]  G. Viviani and G. Heydt, “Stocahstic optimal energy dispatch,” IEEE Transactions, vol. PAS-100, pp. 3221–3228, 
1981. 

[24]  L. Sanabria and T. Dillon, “Stochastic power flow using cumulants and Von Mises functions,” International Journal 
of Electrical Power and Energy Systems, vol. 8, no. 1, pp. 47–60, January 1986. 

[25] P. Zhang and S. T. Lee, “Probabilistic load flow computation using the method of combined cumulants and gram-
charlier expansion,” IEEE Transactions on Power Systems, vol. 19, no. 1, February 2004. 

[26]  F. Tamtum, A.  Schellenberg, A.  Rosehart, W.D., “Enhancements to the Cumulant Method for Probabilistic Optimal 
Power Flow Studies” IEEE Transactions on Power Systems, vol. 24, no. 4, pp. 1739–1746, Nov 2009. 

[27] Dadkhah, M., Venkatesh, B. “Cumulant Based Stochastic Reactive Power Planning Method for Distribution Systems 
With Wind Generators” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2351–2359, Nov 2012. 

[28]  Ali Abdusalam Tamtum “Cumulant-Based Monte-Carlo Method for Probabilistic Optimal Power Flow studies” 1st 
International Conference on Electrical and Computer Engineering , 26-28 March, 2013, Benghazi, Libya 

[29]  Mr. Ali Abdusalam Tamtum , Dr. Abubkr Ali Elshekhi , Dr. Shukri El Dabar “Probabilistic Optimal Power Flow 
Studies Considering Network Outages” High Professional Institute For Comprehensive Professions-Alkhums 
Researches of the 5th Scientific Conference 28/11/2015 

[30] H. P. Hong, “An efficient point estimate method for probabilistic analysis,” Reliability Engineering and System Safety, 
vol. 59, pp. 261– 267, 1998. 

[31] Weigao Sun, Mohsen Zamani, Hai-Tao Zhang, Yuanzheng Li Dabar “Probabilistic Optimal Power Flow With 
Correlated Wind Power Uncertainty via Markov Chain Quasi-Monte-Carlo Sampling” IEEE Transactions on Industrial 
Informatics, Volume: 15, Issue: 11, Year: 2019 

[32]  A. Schellenberg, W. Rosehart, and J. Aguado, “Introduction to cumulantbased probabilistic optimal power flow (P-
OPF),” IEEE Trans. on Power Systems, vol. 20, no. 2, pp. 1184–1186, May 2005. 

[33] K. Xie, Y. Song, J. Stonham, E. Yu, and G. Liu, “Decomposition model and interior point methods for optimal spot 
pricing of electricity in deregulation environments,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 39–50, 
February 2000. 

[34] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice-Hall, 2002. 
[35]  University of Washington College of Engineering. Power system test case archive. World Wide Web, 

http://www.ee.washington.edu/research/pstca/ . Accessed May 1, 2019 

 
 
 


